include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,8}*480a
if this polytope has a name.
Group : SmallGroup(480,948)
Rank : 3
Schlafli Type : {6,8}
Number of vertices, edges, etc : 30, 120, 40
Order of s0s1s2 : 10
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,8,2} of size 960
Vertex Figure Of :
{2,6,8} of size 960
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,4}*240c
4-fold quotients : {6,4}*120
Covers (Minimal Covers in Boldface) :
2-fold covers : {6,8}*960a
3-fold covers : {6,8}*1440b, {6,24}*1440a
4-fold covers : {12,8}*1920a, {6,8}*1920b, {12,8}*1920d
Permutation Representation (GAP) :
s0 := ( 1,11)( 2,24)( 3, 9)( 4,10)( 5,12)( 6,25)( 7,40)( 8,39)(13,19)(14,36)
(15,27)(16,28)(17,18)(20,22)(26,35)(29,38)(30,37)(31,32)(33,34);;
s1 := ( 3,10)( 4, 9)( 7,26)( 8,17)(11,22)(12,23)(13,16)(14,15)(18,37)(19,38)
(20,25)(21,24)(27,32)(28,31)(29,36)(30,35)(33,40)(34,39);;
s2 := ( 1,18)( 2,35)( 3,29)( 4,30)( 5,19)( 6,36)( 7,16)( 9,38)(10,37)(11,17)
(12,13)(14,25)(20,22)(24,26)(28,40)(31,34)(32,33);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s0*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(40)!( 1,11)( 2,24)( 3, 9)( 4,10)( 5,12)( 6,25)( 7,40)( 8,39)(13,19)
(14,36)(15,27)(16,28)(17,18)(20,22)(26,35)(29,38)(30,37)(31,32)(33,34);
s1 := Sym(40)!( 3,10)( 4, 9)( 7,26)( 8,17)(11,22)(12,23)(13,16)(14,15)(18,37)
(19,38)(20,25)(21,24)(27,32)(28,31)(29,36)(30,35)(33,40)(34,39);
s2 := Sym(40)!( 1,18)( 2,35)( 3,29)( 4,30)( 5,19)( 6,36)( 7,16)( 9,38)(10,37)
(11,17)(12,13)(14,25)(20,22)(24,26)(28,40)(31,34)(32,33);
poly := sub<Sym(40)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s0*s2*s1*s2 >;
References : None.
to this polytope