include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,18,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,18,4}*576c
if this polytope has a name.
Group : SmallGroup(576,8262)
Rank : 5
Schlafli Type : {2,2,18,4}
Number of vertices, edges, etc : 2, 2, 18, 36, 4
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,2,18,4,2} of size 1152
Vertex Figure Of :
{2,2,2,18,4} of size 1152
{3,2,2,18,4} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,9,4}*288
3-fold quotients : {2,2,6,4}*192b
6-fold quotients : {2,2,3,4}*96
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,2,18,4}*1152c, {2,2,18,4}*1152
3-fold covers : {2,2,54,4}*1728c, {2,2,18,12}*1728c, {2,6,18,4}*1728e, {6,2,18,4}*1728c
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 7)( 9,13)(10,15)(11,14)(12,16)(17,33)(18,35)(19,34)(20,36)(21,29)
(22,31)(23,30)(24,32)(25,37)(26,39)(27,38)(28,40)(42,43)(45,49)(46,51)(47,50)
(48,52)(53,69)(54,71)(55,70)(56,72)(57,65)(58,67)(59,66)(60,68)(61,73)(62,75)
(63,74)(64,76);;
s3 := ( 5,53)( 6,54)( 7,56)( 8,55)( 9,61)(10,62)(11,64)(12,63)(13,57)(14,58)
(15,60)(16,59)(17,41)(18,42)(19,44)(20,43)(21,49)(22,50)(23,52)(24,51)(25,45)
(26,46)(27,48)(28,47)(29,69)(30,70)(31,72)(32,71)(33,65)(34,66)(35,68)(36,67)
(37,73)(38,74)(39,76)(40,75);;
s4 := ( 5,44)( 6,43)( 7,42)( 8,41)( 9,48)(10,47)(11,46)(12,45)(13,52)(14,51)
(15,50)(16,49)(17,56)(18,55)(19,54)(20,53)(21,60)(22,59)(23,58)(24,57)(25,64)
(26,63)(27,62)(28,61)(29,68)(30,67)(31,66)(32,65)(33,72)(34,71)(35,70)(36,69)
(37,76)(38,75)(39,74)(40,73);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3,
s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s4*s2*s3*s4*s2*s3*s2*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(76)!(1,2);
s1 := Sym(76)!(3,4);
s2 := Sym(76)!( 6, 7)( 9,13)(10,15)(11,14)(12,16)(17,33)(18,35)(19,34)(20,36)
(21,29)(22,31)(23,30)(24,32)(25,37)(26,39)(27,38)(28,40)(42,43)(45,49)(46,51)
(47,50)(48,52)(53,69)(54,71)(55,70)(56,72)(57,65)(58,67)(59,66)(60,68)(61,73)
(62,75)(63,74)(64,76);
s3 := Sym(76)!( 5,53)( 6,54)( 7,56)( 8,55)( 9,61)(10,62)(11,64)(12,63)(13,57)
(14,58)(15,60)(16,59)(17,41)(18,42)(19,44)(20,43)(21,49)(22,50)(23,52)(24,51)
(25,45)(26,46)(27,48)(28,47)(29,69)(30,70)(31,72)(32,71)(33,65)(34,66)(35,68)
(36,67)(37,73)(38,74)(39,76)(40,75);
s4 := Sym(76)!( 5,44)( 6,43)( 7,42)( 8,41)( 9,48)(10,47)(11,46)(12,45)(13,52)
(14,51)(15,50)(16,49)(17,56)(18,55)(19,54)(20,53)(21,60)(22,59)(23,58)(24,57)
(25,64)(26,63)(27,62)(28,61)(29,68)(30,67)(31,66)(32,65)(33,72)(34,71)(35,70)
(36,69)(37,76)(38,75)(39,74)(40,73);
poly := sub<Sym(76)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3,
s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s4*s2*s3*s4*s2*s3*s2*s4 >;
to this polytope