include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,74,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,74,2}*592
if this polytope has a name.
Group : SmallGroup(592,50)
Rank : 4
Schlafli Type : {2,74,2}
Number of vertices, edges, etc : 2, 74, 74, 2
Order of s0s1s2s3 : 74
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,74,2,2} of size 1184
{2,74,2,3} of size 1776
Vertex Figure Of :
{2,2,74,2} of size 1184
{3,2,74,2} of size 1776
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,37,2}*296
37-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,74,4}*1184, {4,74,2}*1184, {2,148,2}*1184
3-fold covers : {2,74,6}*1776, {6,74,2}*1776, {2,222,2}*1776
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4,39)( 5,38)( 6,37)( 7,36)( 8,35)( 9,34)(10,33)(11,32)(12,31)(13,30)
(14,29)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)(41,76)(42,75)(43,74)
(44,73)(45,72)(46,71)(47,70)(48,69)(49,68)(50,67)(51,66)(52,65)(53,64)(54,63)
(55,62)(56,61)(57,60)(58,59);;
s2 := ( 3,41)( 4,40)( 5,76)( 6,75)( 7,74)( 8,73)( 9,72)(10,71)(11,70)(12,69)
(13,68)(14,67)(15,66)(16,65)(17,64)(18,63)(19,62)(20,61)(21,60)(22,59)(23,58)
(24,57)(25,56)(26,55)(27,54)(28,53)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)
(35,46)(36,45)(37,44)(38,43)(39,42);;
s3 := (77,78);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(78)!(1,2);
s1 := Sym(78)!( 4,39)( 5,38)( 6,37)( 7,36)( 8,35)( 9,34)(10,33)(11,32)(12,31)
(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)(41,76)(42,75)
(43,74)(44,73)(45,72)(46,71)(47,70)(48,69)(49,68)(50,67)(51,66)(52,65)(53,64)
(54,63)(55,62)(56,61)(57,60)(58,59);
s2 := Sym(78)!( 3,41)( 4,40)( 5,76)( 6,75)( 7,74)( 8,73)( 9,72)(10,71)(11,70)
(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,63)(19,62)(20,61)(21,60)(22,59)
(23,58)(24,57)(25,56)(26,55)(27,54)(28,53)(29,52)(30,51)(31,50)(32,49)(33,48)
(34,47)(35,46)(36,45)(37,44)(38,43)(39,42);
s3 := Sym(78)!(77,78);
poly := sub<Sym(78)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope