include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {5,2,4,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,4,4}*640
if this polytope has a name.
Group : SmallGroup(640,14119)
Rank : 5
Schlafli Type : {5,2,4,4}
Number of vertices, edges, etc : 5, 5, 8, 16, 8
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{5,2,4,4,2} of size 1280
{5,2,4,4,3} of size 1920
Vertex Figure Of :
{2,5,2,4,4} of size 1280
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,2,4,4}*320
4-fold quotients : {5,2,2,4}*160, {5,2,4,2}*160
8-fold quotients : {5,2,2,2}*80
Covers (Minimal Covers in Boldface) :
2-fold covers : {5,2,4,8}*1280a, {5,2,8,4}*1280a, {5,2,4,4}*1280, {5,2,4,8}*1280b, {5,2,8,4}*1280b, {10,2,4,4}*1280
3-fold covers : {15,2,4,4}*1920, {5,2,4,12}*1920a, {5,2,12,4}*1920a
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := ( 7, 8)( 9,11)(12,15)(14,17)(16,19)(18,20);;
s3 := ( 6, 7)( 8,10)( 9,12)(11,14)(13,16)(15,18)(17,20)(19,21);;
s4 := ( 7, 9)( 8,11)(10,13)(14,17)(16,20)(18,19);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s2*s3*s2*s3*s2*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(21)!(2,3)(4,5);
s1 := Sym(21)!(1,2)(3,4);
s2 := Sym(21)!( 7, 8)( 9,11)(12,15)(14,17)(16,19)(18,20);
s3 := Sym(21)!( 6, 7)( 8,10)( 9,12)(11,14)(13,16)(15,18)(17,20)(19,21);
s4 := Sym(21)!( 7, 9)( 8,11)(10,13)(14,17)(16,20)(18,19);
poly := sub<Sym(21)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3 >;
to this polytope