Polytope of Type {6,6,9}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,9}*648b
if this polytope has a name.
Group : SmallGroup(648,554)
Rank : 4
Schlafli Type : {6,6,9}
Number of vertices, edges, etc : 6, 18, 27, 9
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,6,9,2} of size 1296
Vertex Figure Of :
   {2,6,6,9} of size 1296
   {3,6,6,9} of size 1944
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,6,9}*216, {6,2,9}*216, {6,6,3}*216b
   6-fold quotients : {3,2,9}*108
   9-fold quotients : {2,2,9}*72, {2,6,3}*72, {6,2,3}*72
   18-fold quotients : {3,2,3}*36
   27-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,6,9}*1296b, {6,6,18}*1296c
   3-fold covers : {6,18,9}*1944, {18,6,9}*1944b, {6,6,9}*1944c, {6,6,9}*1944d, {6,6,9}*1944e, {6,6,27}*1944b
Permutation Representation (GAP) :
s0 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)(31,34)
(32,35)(33,36)(40,43)(41,44)(42,45)(49,52)(50,53)(51,54)(58,61)(59,62)(60,63)
(67,70)(68,71)(69,72)(76,79)(77,80)(78,81);;
s1 := ( 1, 4)( 2, 5)( 3, 6)(10,22)(11,23)(12,24)(13,19)(14,20)(15,21)(16,25)
(17,26)(18,27)(28,31)(29,32)(30,33)(37,49)(38,50)(39,51)(40,46)(41,47)(42,48)
(43,52)(44,53)(45,54)(55,58)(56,59)(57,60)(64,76)(65,77)(66,78)(67,73)(68,74)
(69,75)(70,79)(71,80)(72,81);;
s2 := ( 1,10)( 2,12)( 3,11)( 4,13)( 5,15)( 6,14)( 7,16)( 8,18)( 9,17)(20,21)
(23,24)(26,27)(28,66)(29,65)(30,64)(31,69)(32,68)(33,67)(34,72)(35,71)(36,70)
(37,57)(38,56)(39,55)(40,60)(41,59)(42,58)(43,63)(44,62)(45,61)(46,75)(47,74)
(48,73)(49,78)(50,77)(51,76)(52,81)(53,80)(54,79);;
s3 := ( 1,28)( 2,30)( 3,29)( 4,31)( 5,33)( 6,32)( 7,34)( 8,36)( 9,35)(10,46)
(11,48)(12,47)(13,49)(14,51)(15,50)(16,52)(17,54)(18,53)(19,37)(20,39)(21,38)
(22,40)(23,42)(24,41)(25,43)(26,45)(27,44)(55,57)(58,60)(61,63)(64,75)(65,74)
(66,73)(67,78)(68,77)(69,76)(70,81)(71,80)(72,79);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)
(31,34)(32,35)(33,36)(40,43)(41,44)(42,45)(49,52)(50,53)(51,54)(58,61)(59,62)
(60,63)(67,70)(68,71)(69,72)(76,79)(77,80)(78,81);
s1 := Sym(81)!( 1, 4)( 2, 5)( 3, 6)(10,22)(11,23)(12,24)(13,19)(14,20)(15,21)
(16,25)(17,26)(18,27)(28,31)(29,32)(30,33)(37,49)(38,50)(39,51)(40,46)(41,47)
(42,48)(43,52)(44,53)(45,54)(55,58)(56,59)(57,60)(64,76)(65,77)(66,78)(67,73)
(68,74)(69,75)(70,79)(71,80)(72,81);
s2 := Sym(81)!( 1,10)( 2,12)( 3,11)( 4,13)( 5,15)( 6,14)( 7,16)( 8,18)( 9,17)
(20,21)(23,24)(26,27)(28,66)(29,65)(30,64)(31,69)(32,68)(33,67)(34,72)(35,71)
(36,70)(37,57)(38,56)(39,55)(40,60)(41,59)(42,58)(43,63)(44,62)(45,61)(46,75)
(47,74)(48,73)(49,78)(50,77)(51,76)(52,81)(53,80)(54,79);
s3 := Sym(81)!( 1,28)( 2,30)( 3,29)( 4,31)( 5,33)( 6,32)( 7,34)( 8,36)( 9,35)
(10,46)(11,48)(12,47)(13,49)(14,51)(15,50)(16,52)(17,54)(18,53)(19,37)(20,39)
(21,38)(22,40)(23,42)(24,41)(25,43)(26,45)(27,44)(55,57)(58,60)(61,63)(64,75)
(65,74)(66,73)(67,78)(68,77)(69,76)(70,81)(71,80)(72,79);
poly := sub<Sym(81)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope