Polytope of Type {9,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,6,6}*648b
if this polytope has a name.
Group : SmallGroup(648,554)
Rank : 4
Schlafli Type : {9,6,6}
Number of vertices, edges, etc : 9, 27, 18, 6
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {9,6,6,2} of size 1296
   {9,6,6,3} of size 1944
Vertex Figure Of :
   {2,9,6,6} of size 1296
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {9,2,6}*216, {9,6,2}*216, {3,6,6}*216b
   6-fold quotients : {9,2,3}*108
   9-fold quotients : {9,2,2}*72, {3,2,6}*72, {3,6,2}*72
   18-fold quotients : {3,2,3}*36
   27-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {9,6,12}*1296b, {18,6,6}*1296e
   3-fold covers : {9,6,18}*1944b, {9,18,6}*1944, {9,6,6}*1944c, {9,6,6}*1944d, {9,6,6}*1944e, {27,6,6}*1944b
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(20,21)(22,25)
(23,27)(24,26)(28,57)(29,56)(30,55)(31,63)(32,62)(33,61)(34,60)(35,59)(36,58)
(37,66)(38,65)(39,64)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(46,75)(47,74)
(48,73)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76);;
s1 := ( 1,31)( 2,33)( 3,32)( 4,28)( 5,30)( 6,29)( 7,34)( 8,36)( 9,35)(10,40)
(11,42)(12,41)(13,37)(14,39)(15,38)(16,43)(17,45)(18,44)(19,49)(20,51)(21,50)
(22,46)(23,48)(24,47)(25,52)(26,54)(27,53)(55,60)(56,59)(57,58)(61,63)(64,69)
(65,68)(66,67)(70,72)(73,78)(74,77)(75,76)(79,81);;
s2 := ( 4, 7)( 5, 8)( 6, 9)(10,19)(11,20)(12,21)(13,25)(14,26)(15,27)(16,22)
(17,23)(18,24)(31,34)(32,35)(33,36)(37,46)(38,47)(39,48)(40,52)(41,53)(42,54)
(43,49)(44,50)(45,51)(58,61)(59,62)(60,63)(64,73)(65,74)(66,75)(67,79)(68,80)
(69,81)(70,76)(71,77)(72,78);;
s3 := ( 1,10)( 2,11)( 3,12)( 4,13)( 5,14)( 6,15)( 7,16)( 8,17)( 9,18)(28,37)
(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45)(55,64)(56,65)(57,66)
(58,67)(59,68)(60,69)(61,70)(62,71)(63,72);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(20,21)
(22,25)(23,27)(24,26)(28,57)(29,56)(30,55)(31,63)(32,62)(33,61)(34,60)(35,59)
(36,58)(37,66)(38,65)(39,64)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(46,75)
(47,74)(48,73)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76);
s1 := Sym(81)!( 1,31)( 2,33)( 3,32)( 4,28)( 5,30)( 6,29)( 7,34)( 8,36)( 9,35)
(10,40)(11,42)(12,41)(13,37)(14,39)(15,38)(16,43)(17,45)(18,44)(19,49)(20,51)
(21,50)(22,46)(23,48)(24,47)(25,52)(26,54)(27,53)(55,60)(56,59)(57,58)(61,63)
(64,69)(65,68)(66,67)(70,72)(73,78)(74,77)(75,76)(79,81);
s2 := Sym(81)!( 4, 7)( 5, 8)( 6, 9)(10,19)(11,20)(12,21)(13,25)(14,26)(15,27)
(16,22)(17,23)(18,24)(31,34)(32,35)(33,36)(37,46)(38,47)(39,48)(40,52)(41,53)
(42,54)(43,49)(44,50)(45,51)(58,61)(59,62)(60,63)(64,73)(65,74)(66,75)(67,79)
(68,80)(69,81)(70,76)(71,77)(72,78);
s3 := Sym(81)!( 1,10)( 2,11)( 3,12)( 4,13)( 5,14)( 6,15)( 7,16)( 8,17)( 9,18)
(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45)(55,64)(56,65)
(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72);
poly := sub<Sym(81)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope