Polytope of Type {14,2,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {14,2,12}*672
if this polytope has a name.
Group : SmallGroup(672,1140)
Rank : 4
Schlafli Type : {14,2,12}
Number of vertices, edges, etc : 14, 14, 12, 12
Order of s0s1s2s3 : 84
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {14,2,12,2} of size 1344
Vertex Figure Of :
   {2,14,2,12} of size 1344
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {7,2,12}*336, {14,2,6}*336
   3-fold quotients : {14,2,4}*224
   4-fold quotients : {7,2,6}*168, {14,2,3}*168
   6-fold quotients : {7,2,4}*112, {14,2,2}*112
   7-fold quotients : {2,2,12}*96
   8-fold quotients : {7,2,3}*84
   12-fold quotients : {7,2,2}*56
   14-fold quotients : {2,2,6}*48
   21-fold quotients : {2,2,4}*32
   28-fold quotients : {2,2,3}*24
   42-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {28,2,12}*1344, {14,4,12}*1344, {14,2,24}*1344
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,14);;
s2 := (16,17)(18,19)(21,24)(22,23)(25,26);;
s3 := (15,21)(16,18)(17,25)(19,22)(20,23)(24,26);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(26)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
s1 := Sym(26)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,14);
s2 := Sym(26)!(16,17)(18,19)(21,24)(22,23)(25,26);
s3 := Sym(26)!(15,21)(16,18)(17,25)(19,22)(20,23)(24,26);
poly := sub<Sym(26)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope