include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {14,2,24}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {14,2,24}*1344
if this polytope has a name.
Group : SmallGroup(1344,8472)
Rank : 4
Schlafli Type : {14,2,24}
Number of vertices, edges, etc : 14, 14, 24, 24
Order of s0s1s2s3 : 168
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {7,2,24}*672, {14,2,12}*672
3-fold quotients : {14,2,8}*448
4-fold quotients : {7,2,12}*336, {14,2,6}*336
6-fold quotients : {7,2,8}*224, {14,2,4}*224
7-fold quotients : {2,2,24}*192
8-fold quotients : {7,2,6}*168, {14,2,3}*168
12-fold quotients : {7,2,4}*112, {14,2,2}*112
14-fold quotients : {2,2,12}*96
16-fold quotients : {7,2,3}*84
21-fold quotients : {2,2,8}*64
24-fold quotients : {7,2,2}*56
28-fold quotients : {2,2,6}*48
42-fold quotients : {2,2,4}*32
56-fold quotients : {2,2,3}*24
84-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,14);;
s2 := (16,17)(18,19)(20,23)(21,25)(22,24)(26,29)(27,31)(28,30)(33,36)(34,35)
(37,38);;
s3 := (15,21)(16,18)(17,27)(19,22)(20,24)(23,33)(25,28)(26,30)(29,37)(31,34)
(32,35)(36,38);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(38)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
s1 := Sym(38)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,14);
s2 := Sym(38)!(16,17)(18,19)(20,23)(21,25)(22,24)(26,29)(27,31)(28,30)(33,36)
(34,35)(37,38);
s3 := Sym(38)!(15,21)(16,18)(17,27)(19,22)(20,24)(23,33)(25,28)(26,30)(29,37)
(31,34)(32,35)(36,38);
poly := sub<Sym(38)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope