Polytope of Type {7,2,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {7,2,12}*336
if this polytope has a name.
Group : SmallGroup(336,148)
Rank : 4
Schlafli Type : {7,2,12}
Number of vertices, edges, etc : 7, 7, 12, 12
Order of s0s1s2s3 : 84
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {7,2,12,2} of size 672
   {7,2,12,4} of size 1344
   {7,2,12,4} of size 1344
   {7,2,12,4} of size 1344
   {7,2,12,3} of size 1344
Vertex Figure Of :
   {2,7,2,12} of size 672
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {7,2,6}*168
   3-fold quotients : {7,2,4}*112
   4-fold quotients : {7,2,3}*84
   6-fold quotients : {7,2,2}*56
Covers (Minimal Covers in Boldface) :
   2-fold covers : {7,2,24}*672, {14,2,12}*672
   3-fold covers : {7,2,36}*1008, {21,2,12}*1008
   4-fold covers : {7,2,48}*1344, {28,2,12}*1344, {14,4,12}*1344, {14,2,24}*1344
   5-fold covers : {7,2,60}*1680, {35,2,12}*1680
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6);;
s2 := ( 9,10)(11,12)(14,17)(15,16)(18,19);;
s3 := ( 8,14)( 9,11)(10,18)(12,15)(13,16)(17,19);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(19)!(2,3)(4,5)(6,7);
s1 := Sym(19)!(1,2)(3,4)(5,6);
s2 := Sym(19)!( 9,10)(11,12)(14,17)(15,16)(18,19);
s3 := Sym(19)!( 8,14)( 9,11)(10,18)(12,15)(13,16)(17,19);
poly := sub<Sym(19)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope