Polytope of Type {174,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {174,2}*696
if this polytope has a name.
Group : SmallGroup(696,43)
Rank : 3
Schlafli Type : {174,2}
Number of vertices, edges, etc : 174, 174, 2
Order of s0s1s2 : 174
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {174,2,2} of size 1392
Vertex Figure Of :
   {2,174,2} of size 1392
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {87,2}*348
   3-fold quotients : {58,2}*232
   6-fold quotients : {29,2}*116
   29-fold quotients : {6,2}*24
   58-fold quotients : {3,2}*12
   87-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {348,2}*1392, {174,4}*1392a
Permutation Representation (GAP) :
s0 := (  2, 29)(  3, 28)(  4, 27)(  5, 26)(  6, 25)(  7, 24)(  8, 23)(  9, 22)
( 10, 21)( 11, 20)( 12, 19)( 13, 18)( 14, 17)( 15, 16)( 30, 59)( 31, 87)
( 32, 86)( 33, 85)( 34, 84)( 35, 83)( 36, 82)( 37, 81)( 38, 80)( 39, 79)
( 40, 78)( 41, 77)( 42, 76)( 43, 75)( 44, 74)( 45, 73)( 46, 72)( 47, 71)
( 48, 70)( 49, 69)( 50, 68)( 51, 67)( 52, 66)( 53, 65)( 54, 64)( 55, 63)
( 56, 62)( 57, 61)( 58, 60)( 89,116)( 90,115)( 91,114)( 92,113)( 93,112)
( 94,111)( 95,110)( 96,109)( 97,108)( 98,107)( 99,106)(100,105)(101,104)
(102,103)(117,146)(118,174)(119,173)(120,172)(121,171)(122,170)(123,169)
(124,168)(125,167)(126,166)(127,165)(128,164)(129,163)(130,162)(131,161)
(132,160)(133,159)(134,158)(135,157)(136,156)(137,155)(138,154)(139,153)
(140,152)(141,151)(142,150)(143,149)(144,148)(145,147);;
s1 := (  1,118)(  2,117)(  3,145)(  4,144)(  5,143)(  6,142)(  7,141)(  8,140)
(  9,139)( 10,138)( 11,137)( 12,136)( 13,135)( 14,134)( 15,133)( 16,132)
( 17,131)( 18,130)( 19,129)( 20,128)( 21,127)( 22,126)( 23,125)( 24,124)
( 25,123)( 26,122)( 27,121)( 28,120)( 29,119)( 30, 89)( 31, 88)( 32,116)
( 33,115)( 34,114)( 35,113)( 36,112)( 37,111)( 38,110)( 39,109)( 40,108)
( 41,107)( 42,106)( 43,105)( 44,104)( 45,103)( 46,102)( 47,101)( 48,100)
( 49, 99)( 50, 98)( 51, 97)( 52, 96)( 53, 95)( 54, 94)( 55, 93)( 56, 92)
( 57, 91)( 58, 90)( 59,147)( 60,146)( 61,174)( 62,173)( 63,172)( 64,171)
( 65,170)( 66,169)( 67,168)( 68,167)( 69,166)( 70,165)( 71,164)( 72,163)
( 73,162)( 74,161)( 75,160)( 76,159)( 77,158)( 78,157)( 79,156)( 80,155)
( 81,154)( 82,153)( 83,152)( 84,151)( 85,150)( 86,149)( 87,148);;
s2 := (175,176);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(176)!(  2, 29)(  3, 28)(  4, 27)(  5, 26)(  6, 25)(  7, 24)(  8, 23)
(  9, 22)( 10, 21)( 11, 20)( 12, 19)( 13, 18)( 14, 17)( 15, 16)( 30, 59)
( 31, 87)( 32, 86)( 33, 85)( 34, 84)( 35, 83)( 36, 82)( 37, 81)( 38, 80)
( 39, 79)( 40, 78)( 41, 77)( 42, 76)( 43, 75)( 44, 74)( 45, 73)( 46, 72)
( 47, 71)( 48, 70)( 49, 69)( 50, 68)( 51, 67)( 52, 66)( 53, 65)( 54, 64)
( 55, 63)( 56, 62)( 57, 61)( 58, 60)( 89,116)( 90,115)( 91,114)( 92,113)
( 93,112)( 94,111)( 95,110)( 96,109)( 97,108)( 98,107)( 99,106)(100,105)
(101,104)(102,103)(117,146)(118,174)(119,173)(120,172)(121,171)(122,170)
(123,169)(124,168)(125,167)(126,166)(127,165)(128,164)(129,163)(130,162)
(131,161)(132,160)(133,159)(134,158)(135,157)(136,156)(137,155)(138,154)
(139,153)(140,152)(141,151)(142,150)(143,149)(144,148)(145,147);
s1 := Sym(176)!(  1,118)(  2,117)(  3,145)(  4,144)(  5,143)(  6,142)(  7,141)
(  8,140)(  9,139)( 10,138)( 11,137)( 12,136)( 13,135)( 14,134)( 15,133)
( 16,132)( 17,131)( 18,130)( 19,129)( 20,128)( 21,127)( 22,126)( 23,125)
( 24,124)( 25,123)( 26,122)( 27,121)( 28,120)( 29,119)( 30, 89)( 31, 88)
( 32,116)( 33,115)( 34,114)( 35,113)( 36,112)( 37,111)( 38,110)( 39,109)
( 40,108)( 41,107)( 42,106)( 43,105)( 44,104)( 45,103)( 46,102)( 47,101)
( 48,100)( 49, 99)( 50, 98)( 51, 97)( 52, 96)( 53, 95)( 54, 94)( 55, 93)
( 56, 92)( 57, 91)( 58, 90)( 59,147)( 60,146)( 61,174)( 62,173)( 63,172)
( 64,171)( 65,170)( 66,169)( 67,168)( 68,167)( 69,166)( 70,165)( 71,164)
( 72,163)( 73,162)( 74,161)( 75,160)( 76,159)( 77,158)( 78,157)( 79,156)
( 80,155)( 81,154)( 82,153)( 83,152)( 84,151)( 85,150)( 86,149)( 87,148);
s2 := Sym(176)!(175,176);
poly := sub<Sym(176)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope