Polytope of Type {358}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {358}*716
Also Known As : 358-gon, {358}. if this polytope has another name.
Group : SmallGroup(716,3)
Rank : 2
Schlafli Type : {358}
Number of vertices, edges, etc : 358, 358
Order of s0s1 : 358
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {358,2} of size 1432
Vertex Figure Of :
   {2,358} of size 1432
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {179}*358
   179-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {716}*1432
Permutation Representation (GAP) :
s0 := (  2,179)(  3,178)(  4,177)(  5,176)(  6,175)(  7,174)(  8,173)(  9,172)
( 10,171)( 11,170)( 12,169)( 13,168)( 14,167)( 15,166)( 16,165)( 17,164)
( 18,163)( 19,162)( 20,161)( 21,160)( 22,159)( 23,158)( 24,157)( 25,156)
( 26,155)( 27,154)( 28,153)( 29,152)( 30,151)( 31,150)( 32,149)( 33,148)
( 34,147)( 35,146)( 36,145)( 37,144)( 38,143)( 39,142)( 40,141)( 41,140)
( 42,139)( 43,138)( 44,137)( 45,136)( 46,135)( 47,134)( 48,133)( 49,132)
( 50,131)( 51,130)( 52,129)( 53,128)( 54,127)( 55,126)( 56,125)( 57,124)
( 58,123)( 59,122)( 60,121)( 61,120)( 62,119)( 63,118)( 64,117)( 65,116)
( 66,115)( 67,114)( 68,113)( 69,112)( 70,111)( 71,110)( 72,109)( 73,108)
( 74,107)( 75,106)( 76,105)( 77,104)( 78,103)( 79,102)( 80,101)( 81,100)
( 82, 99)( 83, 98)( 84, 97)( 85, 96)( 86, 95)( 87, 94)( 88, 93)( 89, 92)
( 90, 91)(181,358)(182,357)(183,356)(184,355)(185,354)(186,353)(187,352)
(188,351)(189,350)(190,349)(191,348)(192,347)(193,346)(194,345)(195,344)
(196,343)(197,342)(198,341)(199,340)(200,339)(201,338)(202,337)(203,336)
(204,335)(205,334)(206,333)(207,332)(208,331)(209,330)(210,329)(211,328)
(212,327)(213,326)(214,325)(215,324)(216,323)(217,322)(218,321)(219,320)
(220,319)(221,318)(222,317)(223,316)(224,315)(225,314)(226,313)(227,312)
(228,311)(229,310)(230,309)(231,308)(232,307)(233,306)(234,305)(235,304)
(236,303)(237,302)(238,301)(239,300)(240,299)(241,298)(242,297)(243,296)
(244,295)(245,294)(246,293)(247,292)(248,291)(249,290)(250,289)(251,288)
(252,287)(253,286)(254,285)(255,284)(256,283)(257,282)(258,281)(259,280)
(260,279)(261,278)(262,277)(263,276)(264,275)(265,274)(266,273)(267,272)
(268,271)(269,270);;
s1 := (  1,181)(  2,180)(  3,358)(  4,357)(  5,356)(  6,355)(  7,354)(  8,353)
(  9,352)( 10,351)( 11,350)( 12,349)( 13,348)( 14,347)( 15,346)( 16,345)
( 17,344)( 18,343)( 19,342)( 20,341)( 21,340)( 22,339)( 23,338)( 24,337)
( 25,336)( 26,335)( 27,334)( 28,333)( 29,332)( 30,331)( 31,330)( 32,329)
( 33,328)( 34,327)( 35,326)( 36,325)( 37,324)( 38,323)( 39,322)( 40,321)
( 41,320)( 42,319)( 43,318)( 44,317)( 45,316)( 46,315)( 47,314)( 48,313)
( 49,312)( 50,311)( 51,310)( 52,309)( 53,308)( 54,307)( 55,306)( 56,305)
( 57,304)( 58,303)( 59,302)( 60,301)( 61,300)( 62,299)( 63,298)( 64,297)
( 65,296)( 66,295)( 67,294)( 68,293)( 69,292)( 70,291)( 71,290)( 72,289)
( 73,288)( 74,287)( 75,286)( 76,285)( 77,284)( 78,283)( 79,282)( 80,281)
( 81,280)( 82,279)( 83,278)( 84,277)( 85,276)( 86,275)( 87,274)( 88,273)
( 89,272)( 90,271)( 91,270)( 92,269)( 93,268)( 94,267)( 95,266)( 96,265)
( 97,264)( 98,263)( 99,262)(100,261)(101,260)(102,259)(103,258)(104,257)
(105,256)(106,255)(107,254)(108,253)(109,252)(110,251)(111,250)(112,249)
(113,248)(114,247)(115,246)(116,245)(117,244)(118,243)(119,242)(120,241)
(121,240)(122,239)(123,238)(124,237)(125,236)(126,235)(127,234)(128,233)
(129,232)(130,231)(131,230)(132,229)(133,228)(134,227)(135,226)(136,225)
(137,224)(138,223)(139,222)(140,221)(141,220)(142,219)(143,218)(144,217)
(145,216)(146,215)(147,214)(148,213)(149,212)(150,211)(151,210)(152,209)
(153,208)(154,207)(155,206)(156,205)(157,204)(158,203)(159,202)(160,201)
(161,200)(162,199)(163,198)(164,197)(165,196)(166,195)(167,194)(168,193)
(169,192)(170,191)(171,190)(172,189)(173,188)(174,187)(175,186)(176,185)
(177,184)(178,183)(179,182);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(358)!(  2,179)(  3,178)(  4,177)(  5,176)(  6,175)(  7,174)(  8,173)
(  9,172)( 10,171)( 11,170)( 12,169)( 13,168)( 14,167)( 15,166)( 16,165)
( 17,164)( 18,163)( 19,162)( 20,161)( 21,160)( 22,159)( 23,158)( 24,157)
( 25,156)( 26,155)( 27,154)( 28,153)( 29,152)( 30,151)( 31,150)( 32,149)
( 33,148)( 34,147)( 35,146)( 36,145)( 37,144)( 38,143)( 39,142)( 40,141)
( 41,140)( 42,139)( 43,138)( 44,137)( 45,136)( 46,135)( 47,134)( 48,133)
( 49,132)( 50,131)( 51,130)( 52,129)( 53,128)( 54,127)( 55,126)( 56,125)
( 57,124)( 58,123)( 59,122)( 60,121)( 61,120)( 62,119)( 63,118)( 64,117)
( 65,116)( 66,115)( 67,114)( 68,113)( 69,112)( 70,111)( 71,110)( 72,109)
( 73,108)( 74,107)( 75,106)( 76,105)( 77,104)( 78,103)( 79,102)( 80,101)
( 81,100)( 82, 99)( 83, 98)( 84, 97)( 85, 96)( 86, 95)( 87, 94)( 88, 93)
( 89, 92)( 90, 91)(181,358)(182,357)(183,356)(184,355)(185,354)(186,353)
(187,352)(188,351)(189,350)(190,349)(191,348)(192,347)(193,346)(194,345)
(195,344)(196,343)(197,342)(198,341)(199,340)(200,339)(201,338)(202,337)
(203,336)(204,335)(205,334)(206,333)(207,332)(208,331)(209,330)(210,329)
(211,328)(212,327)(213,326)(214,325)(215,324)(216,323)(217,322)(218,321)
(219,320)(220,319)(221,318)(222,317)(223,316)(224,315)(225,314)(226,313)
(227,312)(228,311)(229,310)(230,309)(231,308)(232,307)(233,306)(234,305)
(235,304)(236,303)(237,302)(238,301)(239,300)(240,299)(241,298)(242,297)
(243,296)(244,295)(245,294)(246,293)(247,292)(248,291)(249,290)(250,289)
(251,288)(252,287)(253,286)(254,285)(255,284)(256,283)(257,282)(258,281)
(259,280)(260,279)(261,278)(262,277)(263,276)(264,275)(265,274)(266,273)
(267,272)(268,271)(269,270);
s1 := Sym(358)!(  1,181)(  2,180)(  3,358)(  4,357)(  5,356)(  6,355)(  7,354)
(  8,353)(  9,352)( 10,351)( 11,350)( 12,349)( 13,348)( 14,347)( 15,346)
( 16,345)( 17,344)( 18,343)( 19,342)( 20,341)( 21,340)( 22,339)( 23,338)
( 24,337)( 25,336)( 26,335)( 27,334)( 28,333)( 29,332)( 30,331)( 31,330)
( 32,329)( 33,328)( 34,327)( 35,326)( 36,325)( 37,324)( 38,323)( 39,322)
( 40,321)( 41,320)( 42,319)( 43,318)( 44,317)( 45,316)( 46,315)( 47,314)
( 48,313)( 49,312)( 50,311)( 51,310)( 52,309)( 53,308)( 54,307)( 55,306)
( 56,305)( 57,304)( 58,303)( 59,302)( 60,301)( 61,300)( 62,299)( 63,298)
( 64,297)( 65,296)( 66,295)( 67,294)( 68,293)( 69,292)( 70,291)( 71,290)
( 72,289)( 73,288)( 74,287)( 75,286)( 76,285)( 77,284)( 78,283)( 79,282)
( 80,281)( 81,280)( 82,279)( 83,278)( 84,277)( 85,276)( 86,275)( 87,274)
( 88,273)( 89,272)( 90,271)( 91,270)( 92,269)( 93,268)( 94,267)( 95,266)
( 96,265)( 97,264)( 98,263)( 99,262)(100,261)(101,260)(102,259)(103,258)
(104,257)(105,256)(106,255)(107,254)(108,253)(109,252)(110,251)(111,250)
(112,249)(113,248)(114,247)(115,246)(116,245)(117,244)(118,243)(119,242)
(120,241)(121,240)(122,239)(123,238)(124,237)(125,236)(126,235)(127,234)
(128,233)(129,232)(130,231)(131,230)(132,229)(133,228)(134,227)(135,226)
(136,225)(137,224)(138,223)(139,222)(140,221)(141,220)(142,219)(143,218)
(144,217)(145,216)(146,215)(147,214)(148,213)(149,212)(150,211)(151,210)
(152,209)(153,208)(154,207)(155,206)(156,205)(157,204)(158,203)(159,202)
(160,201)(161,200)(162,199)(163,198)(164,197)(165,196)(166,195)(167,194)
(168,193)(169,192)(170,191)(171,190)(172,189)(173,188)(174,187)(175,186)
(176,185)(177,184)(178,183)(179,182);
poly := sub<Sym(358)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope