include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,8}*768l
if this polytope has a name.
Group : SmallGroup(768,1086324)
Rank : 3
Schlafli Type : {12,8}
Number of vertices, edges, etc : 48, 192, 32
Order of s0s1s2 : 6
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,8}*384e
4-fold quotients : {3,8}*192
8-fold quotients : {6,4}*96
16-fold quotients : {3,4}*48, {6,4}*48b, {6,4}*48c
32-fold quotients : {3,4}*24, {6,2}*24
64-fold quotients : {3,2}*12
96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 9, 15)( 10, 16)( 11, 14)( 12, 13)( 17, 28)( 18, 27)
( 19, 25)( 20, 26)( 21, 31)( 22, 32)( 23, 30)( 24, 29)( 33, 65)( 34, 66)
( 35, 68)( 36, 67)( 37, 70)( 38, 69)( 39, 71)( 40, 72)( 41, 79)( 42, 80)
( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 73)( 48, 74)( 49, 92)( 50, 91)
( 51, 89)( 52, 90)( 53, 95)( 54, 96)( 55, 94)( 56, 93)( 57, 83)( 58, 84)
( 59, 82)( 60, 81)( 61, 88)( 62, 87)( 63, 85)( 64, 86)( 97,103)( 98,104)
( 99,102)(100,101)(107,108)(109,110)(113,126)(114,125)(115,127)(116,128)
(117,121)(118,122)(119,124)(120,123)(129,167)(130,168)(131,166)(132,165)
(133,164)(134,163)(135,161)(136,162)(137,169)(138,170)(139,172)(140,171)
(141,174)(142,173)(143,175)(144,176)(145,190)(146,189)(147,191)(148,192)
(149,185)(150,186)(151,188)(152,187)(153,181)(154,182)(155,184)(156,183)
(157,178)(158,177)(159,179)(160,180);;
s1 := ( 1,167)( 2,165)( 3,168)( 4,166)( 5,162)( 6,164)( 7,161)( 8,163)
( 9,178)( 10,180)( 11,177)( 12,179)( 13,183)( 14,181)( 15,184)( 16,182)
( 17,171)( 18,169)( 19,172)( 20,170)( 21,174)( 22,176)( 23,173)( 24,175)
( 25,188)( 26,186)( 27,187)( 28,185)( 29,189)( 30,191)( 31,190)( 32,192)
( 33,135)( 34,133)( 35,136)( 36,134)( 37,130)( 38,132)( 39,129)( 40,131)
( 41,146)( 42,148)( 43,145)( 44,147)( 45,151)( 46,149)( 47,152)( 48,150)
( 49,139)( 50,137)( 51,140)( 52,138)( 53,142)( 54,144)( 55,141)( 56,143)
( 57,156)( 58,154)( 59,155)( 60,153)( 61,157)( 62,159)( 63,158)( 64,160)
( 65,103)( 66,101)( 67,104)( 68,102)( 69, 98)( 70,100)( 71, 97)( 72, 99)
( 73,114)( 74,116)( 75,113)( 76,115)( 77,119)( 78,117)( 79,120)( 80,118)
( 81,107)( 82,105)( 83,108)( 84,106)( 85,110)( 86,112)( 87,109)( 88,111)
( 89,124)( 90,122)( 91,123)( 92,121)( 93,125)( 94,127)( 95,126)( 96,128);;
s2 := ( 1,105)( 2,106)( 3,107)( 4,108)( 5,109)( 6,110)( 7,111)( 8,112)
( 9,103)( 10,104)( 11,101)( 12,102)( 13, 99)( 14,100)( 15, 97)( 16, 98)
( 17,123)( 18,124)( 19,121)( 20,122)( 21,127)( 22,128)( 23,125)( 24,126)
( 25,117)( 26,118)( 27,119)( 28,120)( 29,113)( 30,114)( 31,115)( 32,116)
( 33,137)( 34,138)( 35,139)( 36,140)( 37,141)( 38,142)( 39,143)( 40,144)
( 41,135)( 42,136)( 43,133)( 44,134)( 45,131)( 46,132)( 47,129)( 48,130)
( 49,155)( 50,156)( 51,153)( 52,154)( 53,159)( 54,160)( 55,157)( 56,158)
( 57,149)( 58,150)( 59,151)( 60,152)( 61,145)( 62,146)( 63,147)( 64,148)
( 65,169)( 66,170)( 67,171)( 68,172)( 69,173)( 70,174)( 71,175)( 72,176)
( 73,167)( 74,168)( 75,165)( 76,166)( 77,163)( 78,164)( 79,161)( 80,162)
( 81,187)( 82,188)( 83,185)( 84,186)( 85,191)( 86,192)( 87,189)( 88,190)
( 89,181)( 90,182)( 91,183)( 92,184)( 93,177)( 94,178)( 95,179)( 96,180);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(192)!( 3, 4)( 5, 6)( 9, 15)( 10, 16)( 11, 14)( 12, 13)( 17, 28)
( 18, 27)( 19, 25)( 20, 26)( 21, 31)( 22, 32)( 23, 30)( 24, 29)( 33, 65)
( 34, 66)( 35, 68)( 36, 67)( 37, 70)( 38, 69)( 39, 71)( 40, 72)( 41, 79)
( 42, 80)( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 73)( 48, 74)( 49, 92)
( 50, 91)( 51, 89)( 52, 90)( 53, 95)( 54, 96)( 55, 94)( 56, 93)( 57, 83)
( 58, 84)( 59, 82)( 60, 81)( 61, 88)( 62, 87)( 63, 85)( 64, 86)( 97,103)
( 98,104)( 99,102)(100,101)(107,108)(109,110)(113,126)(114,125)(115,127)
(116,128)(117,121)(118,122)(119,124)(120,123)(129,167)(130,168)(131,166)
(132,165)(133,164)(134,163)(135,161)(136,162)(137,169)(138,170)(139,172)
(140,171)(141,174)(142,173)(143,175)(144,176)(145,190)(146,189)(147,191)
(148,192)(149,185)(150,186)(151,188)(152,187)(153,181)(154,182)(155,184)
(156,183)(157,178)(158,177)(159,179)(160,180);
s1 := Sym(192)!( 1,167)( 2,165)( 3,168)( 4,166)( 5,162)( 6,164)( 7,161)
( 8,163)( 9,178)( 10,180)( 11,177)( 12,179)( 13,183)( 14,181)( 15,184)
( 16,182)( 17,171)( 18,169)( 19,172)( 20,170)( 21,174)( 22,176)( 23,173)
( 24,175)( 25,188)( 26,186)( 27,187)( 28,185)( 29,189)( 30,191)( 31,190)
( 32,192)( 33,135)( 34,133)( 35,136)( 36,134)( 37,130)( 38,132)( 39,129)
( 40,131)( 41,146)( 42,148)( 43,145)( 44,147)( 45,151)( 46,149)( 47,152)
( 48,150)( 49,139)( 50,137)( 51,140)( 52,138)( 53,142)( 54,144)( 55,141)
( 56,143)( 57,156)( 58,154)( 59,155)( 60,153)( 61,157)( 62,159)( 63,158)
( 64,160)( 65,103)( 66,101)( 67,104)( 68,102)( 69, 98)( 70,100)( 71, 97)
( 72, 99)( 73,114)( 74,116)( 75,113)( 76,115)( 77,119)( 78,117)( 79,120)
( 80,118)( 81,107)( 82,105)( 83,108)( 84,106)( 85,110)( 86,112)( 87,109)
( 88,111)( 89,124)( 90,122)( 91,123)( 92,121)( 93,125)( 94,127)( 95,126)
( 96,128);
s2 := Sym(192)!( 1,105)( 2,106)( 3,107)( 4,108)( 5,109)( 6,110)( 7,111)
( 8,112)( 9,103)( 10,104)( 11,101)( 12,102)( 13, 99)( 14,100)( 15, 97)
( 16, 98)( 17,123)( 18,124)( 19,121)( 20,122)( 21,127)( 22,128)( 23,125)
( 24,126)( 25,117)( 26,118)( 27,119)( 28,120)( 29,113)( 30,114)( 31,115)
( 32,116)( 33,137)( 34,138)( 35,139)( 36,140)( 37,141)( 38,142)( 39,143)
( 40,144)( 41,135)( 42,136)( 43,133)( 44,134)( 45,131)( 46,132)( 47,129)
( 48,130)( 49,155)( 50,156)( 51,153)( 52,154)( 53,159)( 54,160)( 55,157)
( 56,158)( 57,149)( 58,150)( 59,151)( 60,152)( 61,145)( 62,146)( 63,147)
( 64,148)( 65,169)( 66,170)( 67,171)( 68,172)( 69,173)( 70,174)( 71,175)
( 72,176)( 73,167)( 74,168)( 75,165)( 76,166)( 77,163)( 78,164)( 79,161)
( 80,162)( 81,187)( 82,188)( 83,185)( 84,186)( 85,191)( 86,192)( 87,189)
( 88,190)( 89,181)( 90,182)( 91,183)( 92,184)( 93,177)( 94,178)( 95,179)
( 96,180);
poly := sub<Sym(192)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >;
References : None.
to this polytope