include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytopes of Type {12,8}
This page is part of the Atlas of Small Regular Polytopes
(See Other Polytopes of Rank 3)
There are 61 polytopes of this type in this atlas. They are :
- {12,8}*192a (SmallGroup(192,332))
- {12,8}*192b (SmallGroup(192,381))
- {12,8}*384a (SmallGroup(384,860))
- {12,8}*384b (SmallGroup(384,1722))
- {12,8}*384c (SmallGroup(384,5573))
- {12,8}*384d (SmallGroup(384,5573))
- {12,8}*384e (SmallGroup(384,17922))
- {12,8}*384f (SmallGroup(384,17944))
- {12,8}*384g (SmallGroup(384,17958))
- {12,8}*384h (SmallGroup(384,17986))
- {12,8}*576a (SmallGroup(576,5307))
- {12,8}*576b (SmallGroup(576,5410))
- {12,8}*768a (SmallGroup(768,81598))
- {12,8}*768b (SmallGroup(768,90281))
- {12,8}*768c (SmallGroup(768,90301))
- {12,8}*768d (SmallGroup(768,90303))
- {12,8}*768e (SmallGroup(768,1086012))
- {12,8}*768f (SmallGroup(768,1086012))
- {12,8}*768g (SmallGroup(768,1086012))
- {12,8}*768h (SmallGroup(768,1086012))
- {12,8}*768i (SmallGroup(768,1086052))
- {12,8}*768j (SmallGroup(768,1086052))
- {12,8}*768k (SmallGroup(768,1086301))
- {12,8}*768l (SmallGroup(768,1086324))
- {12,8}*768m (SmallGroup(768,1086335))
- {12,8}*768n (SmallGroup(768,1086335))
- {12,8}*768o (SmallGroup(768,1086745))
- {12,8}*768p (SmallGroup(768,1086857))
- {12,8}*768q (SmallGroup(768,1087633))
- {12,8}*768r (SmallGroup(768,1087633))
- {12,8}*768s (SmallGroup(768,1087715))
- {12,8}*768t (SmallGroup(768,1087745))
- {12,8}*768u (SmallGroup(768,1087755))
- {12,8}*768v (SmallGroup(768,1087795))
- {12,8}*768w (SmallGroup(768,1087796))
- {12,8}*768x (SmallGroup(768,1088009))
- {12,8}*1008 (SmallGroup(1008,881))
- {12,8}*1152a (SmallGroup(1152,12018))
- {12,8}*1152b (SmallGroup(1152,32552))
- {12,8}*1152c (SmallGroup(1152,157849))
- {12,8}*1344a (SmallGroup(1344,11289))
- {12,8}*1344b (SmallGroup(1344,11289))
- {12,8}*1344c (SmallGroup(1344,11295))
- {12,8}*1344d (SmallGroup(1344,11295))
- {12,8}*1344e (SmallGroup(1344,11295))
- {12,8}*1344f (SmallGroup(1344,11295))
- {12,8}*1344g (SmallGroup(1344,11295))
- {12,8}*1344h (SmallGroup(1344,11295))
- {12,8}*1728a (SmallGroup(1728,12653))
- {12,8}*1728b (SmallGroup(1728,12703))
- {12,8}*1728c (SmallGroup(1728,12713))
- {12,8}*1728d (SmallGroup(1728,12762))
- {12,8}*1728e (SmallGroup(1728,31258))
- {12,8}*1728f (SmallGroup(1728,31294))
- {12,8}*1728g (SmallGroup(1728,31593))
- {12,8}*1728h (SmallGroup(1728,31623))
- {12,8}*1920a (SmallGroup(1920,240798))
- {12,8}*1920b (SmallGroup(1920,240800))
- {12,8}*1920c (SmallGroup(1920,240838))
- {12,8}*1920d (SmallGroup(1920,240844))
- {12,8}*1920e (SmallGroup(1920,240996))