include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,6}*768c
if this polytope has a name.
Group : SmallGroup(768,1089093)
Rank : 4
Schlafli Type : {2,6,6}
Number of vertices, edges, etc : 2, 32, 96, 32
Order of s0s1s2s3 : 8
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,3}*384
4-fold quotients : {2,6,6}*192
8-fold quotients : {2,3,6}*96, {2,6,3}*96
16-fold quotients : {2,3,3}*48
48-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 5, 6)( 7,12)( 8,11)( 9,13)(10,14)(17,18)(19,35)(20,36)(21,38)(22,37)
(23,44)(24,43)(25,45)(26,46)(27,40)(28,39)(29,41)(30,42)(31,47)(32,48)(33,50)
(34,49)(53,54)(55,60)(56,59)(57,61)(58,62)(65,66)(67,83)(68,84)(69,86)(70,85)
(71,92)(72,91)(73,93)(74,94)(75,88)(76,87)(77,89)(78,90)(79,95)(80,96)(81,98)
(82,97);;
s2 := ( 3,19)( 4,21)( 5,20)( 6,22)( 7,26)( 8,24)( 9,25)(10,23)(11,34)(12,32)
(13,33)(14,31)(15,30)(16,28)(17,29)(18,27)(36,37)(39,42)(43,50)(44,48)(45,49)
(46,47)(51,67)(52,69)(53,68)(54,70)(55,74)(56,72)(57,73)(58,71)(59,82)(60,80)
(61,81)(62,79)(63,78)(64,76)(65,77)(66,75)(84,85)(87,90)(91,98)(92,96)(93,97)
(94,95);;
s3 := ( 3,63)( 4,64)( 5,66)( 6,65)( 7,56)( 8,55)( 9,57)(10,58)(11,60)(12,59)
(13,61)(14,62)(15,51)(16,52)(17,54)(18,53)(19,95)(20,96)(21,98)(22,97)(23,88)
(24,87)(25,89)(26,90)(27,92)(28,91)(29,93)(30,94)(31,83)(32,84)(33,86)(34,85)
(35,79)(36,80)(37,82)(38,81)(39,72)(40,71)(41,73)(42,74)(43,76)(44,75)(45,77)
(46,78)(47,67)(48,68)(49,70)(50,69);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(98)!(1,2);
s1 := Sym(98)!( 5, 6)( 7,12)( 8,11)( 9,13)(10,14)(17,18)(19,35)(20,36)(21,38)
(22,37)(23,44)(24,43)(25,45)(26,46)(27,40)(28,39)(29,41)(30,42)(31,47)(32,48)
(33,50)(34,49)(53,54)(55,60)(56,59)(57,61)(58,62)(65,66)(67,83)(68,84)(69,86)
(70,85)(71,92)(72,91)(73,93)(74,94)(75,88)(76,87)(77,89)(78,90)(79,95)(80,96)
(81,98)(82,97);
s2 := Sym(98)!( 3,19)( 4,21)( 5,20)( 6,22)( 7,26)( 8,24)( 9,25)(10,23)(11,34)
(12,32)(13,33)(14,31)(15,30)(16,28)(17,29)(18,27)(36,37)(39,42)(43,50)(44,48)
(45,49)(46,47)(51,67)(52,69)(53,68)(54,70)(55,74)(56,72)(57,73)(58,71)(59,82)
(60,80)(61,81)(62,79)(63,78)(64,76)(65,77)(66,75)(84,85)(87,90)(91,98)(92,96)
(93,97)(94,95);
s3 := Sym(98)!( 3,63)( 4,64)( 5,66)( 6,65)( 7,56)( 8,55)( 9,57)(10,58)(11,60)
(12,59)(13,61)(14,62)(15,51)(16,52)(17,54)(18,53)(19,95)(20,96)(21,98)(22,97)
(23,88)(24,87)(25,89)(26,90)(27,92)(28,91)(29,93)(30,94)(31,83)(32,84)(33,86)
(34,85)(35,79)(36,80)(37,82)(38,81)(39,72)(40,71)(41,73)(42,74)(43,76)(44,75)
(45,77)(46,78)(47,67)(48,68)(49,70)(50,69);
poly := sub<Sym(98)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2 >;
to this polytope