include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,6}*768e
if this polytope has a name.
Group : SmallGroup(768,1089108)
Rank : 4
Schlafli Type : {2,6,6}
Number of vertices, edges, etc : 2, 32, 96, 32
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,6}*384a
4-fold quotients : {2,6,6}*192
8-fold quotients : {2,3,6}*96, {2,6,3}*96
16-fold quotients : {2,3,3}*48
48-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 5, 6)( 7,11)( 8,12)( 9,14)(10,13)(17,18)(19,35)(20,36)(21,38)(22,37)
(23,43)(24,44)(25,46)(26,45)(27,39)(28,40)(29,42)(30,41)(31,47)(32,48)(33,50)
(34,49)(53,54)(55,59)(56,60)(57,62)(58,61)(65,66)(67,83)(68,84)(69,86)(70,85)
(71,91)(72,92)(73,94)(74,93)(75,87)(76,88)(77,90)(78,89)(79,95)(80,96)(81,98)
(82,97);;
s2 := ( 3,19)( 4,22)( 5,21)( 6,20)( 7,25)( 8,24)( 9,23)(10,26)(11,32)(12,33)
(13,34)(14,31)(15,30)(16,27)(17,28)(18,29)(36,38)(39,41)(43,48)(44,49)(45,50)
(46,47)(51,67)(52,70)(53,69)(54,68)(55,73)(56,72)(57,71)(58,74)(59,80)(60,81)
(61,82)(62,79)(63,78)(64,75)(65,76)(66,77)(84,86)(87,89)(91,96)(92,97)(93,98)
(94,95);;
s3 := ( 3,63)( 4,64)( 5,66)( 6,65)( 7,55)( 8,56)( 9,58)(10,57)(11,59)(12,60)
(13,62)(14,61)(15,51)(16,52)(17,54)(18,53)(19,95)(20,96)(21,98)(22,97)(23,87)
(24,88)(25,90)(26,89)(27,91)(28,92)(29,94)(30,93)(31,83)(32,84)(33,86)(34,85)
(35,79)(36,80)(37,82)(38,81)(39,71)(40,72)(41,74)(42,73)(43,75)(44,76)(45,78)
(46,77)(47,67)(48,68)(49,70)(50,69);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(98)!(1,2);
s1 := Sym(98)!( 5, 6)( 7,11)( 8,12)( 9,14)(10,13)(17,18)(19,35)(20,36)(21,38)
(22,37)(23,43)(24,44)(25,46)(26,45)(27,39)(28,40)(29,42)(30,41)(31,47)(32,48)
(33,50)(34,49)(53,54)(55,59)(56,60)(57,62)(58,61)(65,66)(67,83)(68,84)(69,86)
(70,85)(71,91)(72,92)(73,94)(74,93)(75,87)(76,88)(77,90)(78,89)(79,95)(80,96)
(81,98)(82,97);
s2 := Sym(98)!( 3,19)( 4,22)( 5,21)( 6,20)( 7,25)( 8,24)( 9,23)(10,26)(11,32)
(12,33)(13,34)(14,31)(15,30)(16,27)(17,28)(18,29)(36,38)(39,41)(43,48)(44,49)
(45,50)(46,47)(51,67)(52,70)(53,69)(54,68)(55,73)(56,72)(57,71)(58,74)(59,80)
(60,81)(61,82)(62,79)(63,78)(64,75)(65,76)(66,77)(84,86)(87,89)(91,96)(92,97)
(93,98)(94,95);
s3 := Sym(98)!( 3,63)( 4,64)( 5,66)( 6,65)( 7,55)( 8,56)( 9,58)(10,57)(11,59)
(12,60)(13,62)(14,61)(15,51)(16,52)(17,54)(18,53)(19,95)(20,96)(21,98)(22,97)
(23,87)(24,88)(25,90)(26,89)(27,91)(28,92)(29,94)(30,93)(31,83)(32,84)(33,86)
(34,85)(35,79)(36,80)(37,82)(38,81)(39,71)(40,72)(41,74)(42,73)(43,75)(44,76)
(45,78)(46,77)(47,67)(48,68)(49,70)(50,69);
poly := sub<Sym(98)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2 >;
to this polytope