Polytope of Type {12,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,8}*768d
if this polytope has a name.
Group : SmallGroup(768,90303)
Rank : 3
Schlafli Type : {12,8}
Number of vertices, edges, etc : 48, 192, 32
Order of s0s1s2 : 24
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,8}*384b
   3-fold quotients : {4,8}*256d
   4-fold quotients : {12,4}*192a
   6-fold quotients : {4,8}*128b
   8-fold quotients : {12,4}*96a
   12-fold quotients : {4,4}*64
   16-fold quotients : {12,2}*48, {6,4}*48a
   24-fold quotients : {4,4}*32
   32-fold quotients : {6,2}*24
   48-fold quotients : {2,4}*16, {4,2}*16
   64-fold quotients : {3,2}*12
   96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 97)(  2, 99)(  3, 98)(  4,100)(  5,102)(  6,101)(  7,106)(  8,108)
(  9,107)( 10,103)( 11,105)( 12,104)( 13,112)( 14,114)( 15,113)( 16,109)
( 17,111)( 18,110)( 19,115)( 20,117)( 21,116)( 22,118)( 23,120)( 24,119)
( 25,121)( 26,123)( 27,122)( 28,124)( 29,126)( 30,125)( 31,130)( 32,132)
( 33,131)( 34,127)( 35,129)( 36,128)( 37,136)( 38,138)( 39,137)( 40,133)
( 41,135)( 42,134)( 43,139)( 44,141)( 45,140)( 46,142)( 47,144)( 48,143)
( 49,157)( 50,159)( 51,158)( 52,160)( 53,162)( 54,161)( 55,166)( 56,168)
( 57,167)( 58,163)( 59,165)( 60,164)( 61,145)( 62,147)( 63,146)( 64,148)
( 65,150)( 66,149)( 67,154)( 68,156)( 69,155)( 70,151)( 71,153)( 72,152)
( 73,184)( 74,186)( 75,185)( 76,181)( 77,183)( 78,182)( 79,187)( 80,189)
( 81,188)( 82,190)( 83,192)( 84,191)( 85,172)( 86,174)( 87,173)( 88,169)
( 89,171)( 90,170)( 91,175)( 92,177)( 93,176)( 94,178)( 95,180)( 96,179)
(193,289)(194,291)(195,290)(196,292)(197,294)(198,293)(199,298)(200,300)
(201,299)(202,295)(203,297)(204,296)(205,304)(206,306)(207,305)(208,301)
(209,303)(210,302)(211,307)(212,309)(213,308)(214,310)(215,312)(216,311)
(217,313)(218,315)(219,314)(220,316)(221,318)(222,317)(223,322)(224,324)
(225,323)(226,319)(227,321)(228,320)(229,328)(230,330)(231,329)(232,325)
(233,327)(234,326)(235,331)(236,333)(237,332)(238,334)(239,336)(240,335)
(241,349)(242,351)(243,350)(244,352)(245,354)(246,353)(247,358)(248,360)
(249,359)(250,355)(251,357)(252,356)(253,337)(254,339)(255,338)(256,340)
(257,342)(258,341)(259,346)(260,348)(261,347)(262,343)(263,345)(264,344)
(265,376)(266,378)(267,377)(268,373)(269,375)(270,374)(271,379)(272,381)
(273,380)(274,382)(275,384)(276,383)(277,364)(278,366)(279,365)(280,361)
(281,363)(282,362)(283,367)(284,369)(285,368)(286,370)(287,372)(288,371);;
s1 := (  1,  3)(  4,  6)(  7,  9)( 10, 12)( 13, 21)( 14, 20)( 15, 19)( 16, 24)
( 17, 23)( 18, 22)( 25, 27)( 28, 30)( 31, 33)( 34, 36)( 37, 45)( 38, 44)
( 39, 43)( 40, 48)( 41, 47)( 42, 46)( 49, 54)( 50, 53)( 51, 52)( 55, 60)
( 56, 59)( 57, 58)( 61, 72)( 62, 71)( 63, 70)( 64, 69)( 65, 68)( 66, 67)
( 73, 78)( 74, 77)( 75, 76)( 79, 84)( 80, 83)( 81, 82)( 85, 96)( 86, 95)
( 87, 94)( 88, 93)( 89, 92)( 90, 91)( 97,123)( 98,122)( 99,121)(100,126)
(101,125)(102,124)(103,129)(104,128)(105,127)(106,132)(107,131)(108,130)
(109,141)(110,140)(111,139)(112,144)(113,143)(114,142)(115,135)(116,134)
(117,133)(118,138)(119,137)(120,136)(145,177)(146,176)(147,175)(148,180)
(149,179)(150,178)(151,171)(152,170)(153,169)(154,174)(155,173)(156,172)
(157,183)(158,182)(159,181)(160,186)(161,185)(162,184)(163,189)(164,188)
(165,187)(166,192)(167,191)(168,190)(193,243)(194,242)(195,241)(196,246)
(197,245)(198,244)(199,249)(200,248)(201,247)(202,252)(203,251)(204,250)
(205,261)(206,260)(207,259)(208,264)(209,263)(210,262)(211,255)(212,254)
(213,253)(214,258)(215,257)(216,256)(217,267)(218,266)(219,265)(220,270)
(221,269)(222,268)(223,273)(224,272)(225,271)(226,276)(227,275)(228,274)
(229,285)(230,284)(231,283)(232,288)(233,287)(234,286)(235,279)(236,278)
(237,277)(238,282)(239,281)(240,280)(289,378)(290,377)(291,376)(292,375)
(293,374)(294,373)(295,384)(296,383)(297,382)(298,381)(299,380)(300,379)
(301,369)(302,368)(303,367)(304,372)(305,371)(306,370)(307,363)(308,362)
(309,361)(310,366)(311,365)(312,364)(313,351)(314,350)(315,349)(316,354)
(317,353)(318,352)(319,357)(320,356)(321,355)(322,360)(323,359)(324,358)
(325,348)(326,347)(327,346)(328,345)(329,344)(330,343)(331,342)(332,341)
(333,340)(334,339)(335,338)(336,337);;
s2 := (  1,289)(  2,290)(  3,291)(  4,292)(  5,293)(  6,294)(  7,295)(  8,296)
(  9,297)( 10,298)( 11,299)( 12,300)( 13,304)( 14,305)( 15,306)( 16,301)
( 17,302)( 18,303)( 19,310)( 20,311)( 21,312)( 22,307)( 23,308)( 24,309)
( 25,334)( 26,335)( 27,336)( 28,331)( 29,332)( 30,333)( 31,328)( 32,329)
( 33,330)( 34,325)( 35,326)( 36,327)( 37,322)( 38,323)( 39,324)( 40,319)
( 41,320)( 42,321)( 43,316)( 44,317)( 45,318)( 46,313)( 47,314)( 48,315)
( 49,352)( 50,353)( 51,354)( 52,349)( 53,350)( 54,351)( 55,358)( 56,359)
( 57,360)( 58,355)( 59,356)( 60,357)( 61,340)( 62,341)( 63,342)( 64,337)
( 65,338)( 66,339)( 67,346)( 68,347)( 69,348)( 70,343)( 71,344)( 72,345)
( 73,367)( 74,368)( 75,369)( 76,370)( 77,371)( 78,372)( 79,361)( 80,362)
( 81,363)( 82,364)( 83,365)( 84,366)( 85,382)( 86,383)( 87,384)( 88,379)
( 89,380)( 90,381)( 91,376)( 92,377)( 93,378)( 94,373)( 95,374)( 96,375)
( 97,193)( 98,194)( 99,195)(100,196)(101,197)(102,198)(103,199)(104,200)
(105,201)(106,202)(107,203)(108,204)(109,208)(110,209)(111,210)(112,205)
(113,206)(114,207)(115,214)(116,215)(117,216)(118,211)(119,212)(120,213)
(121,238)(122,239)(123,240)(124,235)(125,236)(126,237)(127,232)(128,233)
(129,234)(130,229)(131,230)(132,231)(133,226)(134,227)(135,228)(136,223)
(137,224)(138,225)(139,220)(140,221)(141,222)(142,217)(143,218)(144,219)
(145,256)(146,257)(147,258)(148,253)(149,254)(150,255)(151,262)(152,263)
(153,264)(154,259)(155,260)(156,261)(157,244)(158,245)(159,246)(160,241)
(161,242)(162,243)(163,250)(164,251)(165,252)(166,247)(167,248)(168,249)
(169,271)(170,272)(171,273)(172,274)(173,275)(174,276)(175,265)(176,266)
(177,267)(178,268)(179,269)(180,270)(181,286)(182,287)(183,288)(184,283)
(185,284)(186,285)(187,280)(188,281)(189,282)(190,277)(191,278)(192,279);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s0*s1*s0*s1*s2*s1*s0, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(384)!(  1, 97)(  2, 99)(  3, 98)(  4,100)(  5,102)(  6,101)(  7,106)
(  8,108)(  9,107)( 10,103)( 11,105)( 12,104)( 13,112)( 14,114)( 15,113)
( 16,109)( 17,111)( 18,110)( 19,115)( 20,117)( 21,116)( 22,118)( 23,120)
( 24,119)( 25,121)( 26,123)( 27,122)( 28,124)( 29,126)( 30,125)( 31,130)
( 32,132)( 33,131)( 34,127)( 35,129)( 36,128)( 37,136)( 38,138)( 39,137)
( 40,133)( 41,135)( 42,134)( 43,139)( 44,141)( 45,140)( 46,142)( 47,144)
( 48,143)( 49,157)( 50,159)( 51,158)( 52,160)( 53,162)( 54,161)( 55,166)
( 56,168)( 57,167)( 58,163)( 59,165)( 60,164)( 61,145)( 62,147)( 63,146)
( 64,148)( 65,150)( 66,149)( 67,154)( 68,156)( 69,155)( 70,151)( 71,153)
( 72,152)( 73,184)( 74,186)( 75,185)( 76,181)( 77,183)( 78,182)( 79,187)
( 80,189)( 81,188)( 82,190)( 83,192)( 84,191)( 85,172)( 86,174)( 87,173)
( 88,169)( 89,171)( 90,170)( 91,175)( 92,177)( 93,176)( 94,178)( 95,180)
( 96,179)(193,289)(194,291)(195,290)(196,292)(197,294)(198,293)(199,298)
(200,300)(201,299)(202,295)(203,297)(204,296)(205,304)(206,306)(207,305)
(208,301)(209,303)(210,302)(211,307)(212,309)(213,308)(214,310)(215,312)
(216,311)(217,313)(218,315)(219,314)(220,316)(221,318)(222,317)(223,322)
(224,324)(225,323)(226,319)(227,321)(228,320)(229,328)(230,330)(231,329)
(232,325)(233,327)(234,326)(235,331)(236,333)(237,332)(238,334)(239,336)
(240,335)(241,349)(242,351)(243,350)(244,352)(245,354)(246,353)(247,358)
(248,360)(249,359)(250,355)(251,357)(252,356)(253,337)(254,339)(255,338)
(256,340)(257,342)(258,341)(259,346)(260,348)(261,347)(262,343)(263,345)
(264,344)(265,376)(266,378)(267,377)(268,373)(269,375)(270,374)(271,379)
(272,381)(273,380)(274,382)(275,384)(276,383)(277,364)(278,366)(279,365)
(280,361)(281,363)(282,362)(283,367)(284,369)(285,368)(286,370)(287,372)
(288,371);
s1 := Sym(384)!(  1,  3)(  4,  6)(  7,  9)( 10, 12)( 13, 21)( 14, 20)( 15, 19)
( 16, 24)( 17, 23)( 18, 22)( 25, 27)( 28, 30)( 31, 33)( 34, 36)( 37, 45)
( 38, 44)( 39, 43)( 40, 48)( 41, 47)( 42, 46)( 49, 54)( 50, 53)( 51, 52)
( 55, 60)( 56, 59)( 57, 58)( 61, 72)( 62, 71)( 63, 70)( 64, 69)( 65, 68)
( 66, 67)( 73, 78)( 74, 77)( 75, 76)( 79, 84)( 80, 83)( 81, 82)( 85, 96)
( 86, 95)( 87, 94)( 88, 93)( 89, 92)( 90, 91)( 97,123)( 98,122)( 99,121)
(100,126)(101,125)(102,124)(103,129)(104,128)(105,127)(106,132)(107,131)
(108,130)(109,141)(110,140)(111,139)(112,144)(113,143)(114,142)(115,135)
(116,134)(117,133)(118,138)(119,137)(120,136)(145,177)(146,176)(147,175)
(148,180)(149,179)(150,178)(151,171)(152,170)(153,169)(154,174)(155,173)
(156,172)(157,183)(158,182)(159,181)(160,186)(161,185)(162,184)(163,189)
(164,188)(165,187)(166,192)(167,191)(168,190)(193,243)(194,242)(195,241)
(196,246)(197,245)(198,244)(199,249)(200,248)(201,247)(202,252)(203,251)
(204,250)(205,261)(206,260)(207,259)(208,264)(209,263)(210,262)(211,255)
(212,254)(213,253)(214,258)(215,257)(216,256)(217,267)(218,266)(219,265)
(220,270)(221,269)(222,268)(223,273)(224,272)(225,271)(226,276)(227,275)
(228,274)(229,285)(230,284)(231,283)(232,288)(233,287)(234,286)(235,279)
(236,278)(237,277)(238,282)(239,281)(240,280)(289,378)(290,377)(291,376)
(292,375)(293,374)(294,373)(295,384)(296,383)(297,382)(298,381)(299,380)
(300,379)(301,369)(302,368)(303,367)(304,372)(305,371)(306,370)(307,363)
(308,362)(309,361)(310,366)(311,365)(312,364)(313,351)(314,350)(315,349)
(316,354)(317,353)(318,352)(319,357)(320,356)(321,355)(322,360)(323,359)
(324,358)(325,348)(326,347)(327,346)(328,345)(329,344)(330,343)(331,342)
(332,341)(333,340)(334,339)(335,338)(336,337);
s2 := Sym(384)!(  1,289)(  2,290)(  3,291)(  4,292)(  5,293)(  6,294)(  7,295)
(  8,296)(  9,297)( 10,298)( 11,299)( 12,300)( 13,304)( 14,305)( 15,306)
( 16,301)( 17,302)( 18,303)( 19,310)( 20,311)( 21,312)( 22,307)( 23,308)
( 24,309)( 25,334)( 26,335)( 27,336)( 28,331)( 29,332)( 30,333)( 31,328)
( 32,329)( 33,330)( 34,325)( 35,326)( 36,327)( 37,322)( 38,323)( 39,324)
( 40,319)( 41,320)( 42,321)( 43,316)( 44,317)( 45,318)( 46,313)( 47,314)
( 48,315)( 49,352)( 50,353)( 51,354)( 52,349)( 53,350)( 54,351)( 55,358)
( 56,359)( 57,360)( 58,355)( 59,356)( 60,357)( 61,340)( 62,341)( 63,342)
( 64,337)( 65,338)( 66,339)( 67,346)( 68,347)( 69,348)( 70,343)( 71,344)
( 72,345)( 73,367)( 74,368)( 75,369)( 76,370)( 77,371)( 78,372)( 79,361)
( 80,362)( 81,363)( 82,364)( 83,365)( 84,366)( 85,382)( 86,383)( 87,384)
( 88,379)( 89,380)( 90,381)( 91,376)( 92,377)( 93,378)( 94,373)( 95,374)
( 96,375)( 97,193)( 98,194)( 99,195)(100,196)(101,197)(102,198)(103,199)
(104,200)(105,201)(106,202)(107,203)(108,204)(109,208)(110,209)(111,210)
(112,205)(113,206)(114,207)(115,214)(116,215)(117,216)(118,211)(119,212)
(120,213)(121,238)(122,239)(123,240)(124,235)(125,236)(126,237)(127,232)
(128,233)(129,234)(130,229)(131,230)(132,231)(133,226)(134,227)(135,228)
(136,223)(137,224)(138,225)(139,220)(140,221)(141,222)(142,217)(143,218)
(144,219)(145,256)(146,257)(147,258)(148,253)(149,254)(150,255)(151,262)
(152,263)(153,264)(154,259)(155,260)(156,261)(157,244)(158,245)(159,246)
(160,241)(161,242)(162,243)(163,250)(164,251)(165,252)(166,247)(167,248)
(168,249)(169,271)(170,272)(171,273)(172,274)(173,275)(174,276)(175,265)
(176,266)(177,267)(178,268)(179,269)(180,270)(181,286)(182,287)(183,288)
(184,283)(185,284)(186,285)(187,280)(188,281)(189,282)(190,277)(191,278)
(192,279);
poly := sub<Sym(384)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s0*s1*s0*s1*s2*s1*s0, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope