include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {64,2,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {64,2,3}*768
if this polytope has a name.
Group : SmallGroup(768,90609)
Rank : 4
Schlafli Type : {64,2,3}
Number of vertices, edges, etc : 64, 64, 3, 3
Order of s0s1s2s3 : 192
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {32,2,3}*384
4-fold quotients : {16,2,3}*192
8-fold quotients : {8,2,3}*96
16-fold quotients : {4,2,3}*48
32-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 7)( 6, 8)( 9,13)(10,14)(11,16)(12,15)(17,25)(18,26)(19,28)
(20,27)(21,31)(22,32)(23,29)(24,30)(33,49)(34,50)(35,52)(36,51)(37,55)(38,56)
(39,53)(40,54)(41,61)(42,62)(43,64)(44,63)(45,57)(46,58)(47,60)(48,59);;
s1 := ( 1,33)( 2,34)( 3,36)( 4,35)( 5,39)( 6,40)( 7,37)( 8,38)( 9,45)(10,46)
(11,48)(12,47)(13,41)(14,42)(15,44)(16,43)(17,57)(18,58)(19,60)(20,59)(21,63)
(22,64)(23,61)(24,62)(25,49)(26,50)(27,52)(28,51)(29,55)(30,56)(31,53)
(32,54);;
s2 := (66,67);;
s3 := (65,66);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(67)!( 3, 4)( 5, 7)( 6, 8)( 9,13)(10,14)(11,16)(12,15)(17,25)(18,26)
(19,28)(20,27)(21,31)(22,32)(23,29)(24,30)(33,49)(34,50)(35,52)(36,51)(37,55)
(38,56)(39,53)(40,54)(41,61)(42,62)(43,64)(44,63)(45,57)(46,58)(47,60)(48,59);
s1 := Sym(67)!( 1,33)( 2,34)( 3,36)( 4,35)( 5,39)( 6,40)( 7,37)( 8,38)( 9,45)
(10,46)(11,48)(12,47)(13,41)(14,42)(15,44)(16,43)(17,57)(18,58)(19,60)(20,59)
(21,63)(22,64)(23,61)(24,62)(25,49)(26,50)(27,52)(28,51)(29,55)(30,56)(31,53)
(32,54);
s2 := Sym(67)!(66,67);
s3 := Sym(67)!(65,66);
poly := sub<Sym(67)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope