Polytope of Type {4,14}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,14}*784
Also Known As : {4,14}4if this polytope has another name.
Group : SmallGroup(784,165)
Rank : 3
Schlafli Type : {4,14}
Number of vertices, edges, etc : 28, 196, 98
Order of s0s1s2 : 4
Order of s0s1s2s1 : 14
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Halving Operation
Facet Of :
   {4,14,2} of size 1568
Vertex Figure Of :
   {2,4,14} of size 1568
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,14}*392
   49-fold quotients : {4,2}*16
   98-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {8,14}*1568a, {4,28}*1568
Permutation Representation (GAP) :
s0 := ( 8,43)( 9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,36)(16,37)(17,38)
(18,39)(19,40)(20,41)(21,42)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)(28,35)
(57,92)(58,93)(59,94)(60,95)(61,96)(62,97)(63,98)(64,85)(65,86)(66,87)(67,88)
(68,89)(69,90)(70,91)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84);;
s1 := ( 2, 8)( 3,15)( 4,22)( 5,29)( 6,36)( 7,43)(10,16)(11,23)(12,30)(13,37)
(14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)(42,48)
(51,57)(52,64)(53,71)(54,78)(55,85)(56,92)(59,65)(60,72)(61,79)(62,86)(63,93)
(67,73)(68,80)(69,87)(70,94)(75,81)(76,88)(77,95)(83,89)(84,96)(91,97);;
s2 := ( 1,51)( 2,50)( 3,56)( 4,55)( 5,54)( 6,53)( 7,52)( 8,93)( 9,92)(10,98)
(11,97)(12,96)(13,95)(14,94)(15,86)(16,85)(17,91)(18,90)(19,89)(20,88)(21,87)
(22,79)(23,78)(24,84)(25,83)(26,82)(27,81)(28,80)(29,72)(30,71)(31,77)(32,76)
(33,75)(34,74)(35,73)(36,65)(37,64)(38,70)(39,69)(40,68)(41,67)(42,66)(43,58)
(44,57)(45,63)(46,62)(47,61)(48,60)(49,59);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(98)!( 8,43)( 9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,36)(16,37)
(17,38)(18,39)(19,40)(20,41)(21,42)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)
(28,35)(57,92)(58,93)(59,94)(60,95)(61,96)(62,97)(63,98)(64,85)(65,86)(66,87)
(67,88)(68,89)(69,90)(70,91)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84);
s1 := Sym(98)!( 2, 8)( 3,15)( 4,22)( 5,29)( 6,36)( 7,43)(10,16)(11,23)(12,30)
(13,37)(14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)
(42,48)(51,57)(52,64)(53,71)(54,78)(55,85)(56,92)(59,65)(60,72)(61,79)(62,86)
(63,93)(67,73)(68,80)(69,87)(70,94)(75,81)(76,88)(77,95)(83,89)(84,96)(91,97);
s2 := Sym(98)!( 1,51)( 2,50)( 3,56)( 4,55)( 5,54)( 6,53)( 7,52)( 8,93)( 9,92)
(10,98)(11,97)(12,96)(13,95)(14,94)(15,86)(16,85)(17,91)(18,90)(19,89)(20,88)
(21,87)(22,79)(23,78)(24,84)(25,83)(26,82)(27,81)(28,80)(29,72)(30,71)(31,77)
(32,76)(33,75)(34,74)(35,73)(36,65)(37,64)(38,70)(39,69)(40,68)(41,67)(42,66)
(43,58)(44,57)(45,63)(46,62)(47,61)(48,60)(49,59);
poly := sub<Sym(98)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope