include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,33}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,33}*792
if this polytope has a name.
Group : SmallGroup(792,129)
Rank : 4
Schlafli Type : {2,6,33}
Number of vertices, edges, etc : 2, 6, 99, 33
Order of s0s1s2s3 : 66
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,6,33,2} of size 1584
Vertex Figure Of :
{2,2,6,33} of size 1584
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,2,33}*264
9-fold quotients : {2,2,11}*88
11-fold quotients : {2,6,3}*72
33-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,6,33}*1584, {2,6,66}*1584c
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 36, 69)( 37, 70)( 38, 71)( 39, 72)( 40, 73)( 41, 74)( 42, 75)( 43, 76)
( 44, 77)( 45, 78)( 46, 79)( 47, 80)( 48, 81)( 49, 82)( 50, 83)( 51, 84)
( 52, 85)( 53, 86)( 54, 87)( 55, 88)( 56, 89)( 57, 90)( 58, 91)( 59, 92)
( 60, 93)( 61, 94)( 62, 95)( 63, 96)( 64, 97)( 65, 98)( 66, 99)( 67,100)
( 68,101);;
s2 := ( 3, 36)( 4, 46)( 5, 45)( 6, 44)( 7, 43)( 8, 42)( 9, 41)( 10, 40)
( 11, 39)( 12, 38)( 13, 37)( 14, 58)( 15, 68)( 16, 67)( 17, 66)( 18, 65)
( 19, 64)( 20, 63)( 21, 62)( 22, 61)( 23, 60)( 24, 59)( 25, 47)( 26, 57)
( 27, 56)( 28, 55)( 29, 54)( 30, 53)( 31, 52)( 32, 51)( 33, 50)( 34, 49)
( 35, 48)( 70, 79)( 71, 78)( 72, 77)( 73, 76)( 74, 75)( 80, 91)( 81,101)
( 82,100)( 83, 99)( 84, 98)( 85, 97)( 86, 96)( 87, 95)( 88, 94)( 89, 93)
( 90, 92);;
s3 := ( 3, 15)( 4, 14)( 5, 24)( 6, 23)( 7, 22)( 8, 21)( 9, 20)( 10, 19)
( 11, 18)( 12, 17)( 13, 16)( 25, 26)( 27, 35)( 28, 34)( 29, 33)( 30, 32)
( 36, 81)( 37, 80)( 38, 90)( 39, 89)( 40, 88)( 41, 87)( 42, 86)( 43, 85)
( 44, 84)( 45, 83)( 46, 82)( 47, 70)( 48, 69)( 49, 79)( 50, 78)( 51, 77)
( 52, 76)( 53, 75)( 54, 74)( 55, 73)( 56, 72)( 57, 71)( 58, 92)( 59, 91)
( 60,101)( 61,100)( 62, 99)( 63, 98)( 64, 97)( 65, 96)( 66, 95)( 67, 94)
( 68, 93);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(101)!(1,2);
s1 := Sym(101)!( 36, 69)( 37, 70)( 38, 71)( 39, 72)( 40, 73)( 41, 74)( 42, 75)
( 43, 76)( 44, 77)( 45, 78)( 46, 79)( 47, 80)( 48, 81)( 49, 82)( 50, 83)
( 51, 84)( 52, 85)( 53, 86)( 54, 87)( 55, 88)( 56, 89)( 57, 90)( 58, 91)
( 59, 92)( 60, 93)( 61, 94)( 62, 95)( 63, 96)( 64, 97)( 65, 98)( 66, 99)
( 67,100)( 68,101);
s2 := Sym(101)!( 3, 36)( 4, 46)( 5, 45)( 6, 44)( 7, 43)( 8, 42)( 9, 41)
( 10, 40)( 11, 39)( 12, 38)( 13, 37)( 14, 58)( 15, 68)( 16, 67)( 17, 66)
( 18, 65)( 19, 64)( 20, 63)( 21, 62)( 22, 61)( 23, 60)( 24, 59)( 25, 47)
( 26, 57)( 27, 56)( 28, 55)( 29, 54)( 30, 53)( 31, 52)( 32, 51)( 33, 50)
( 34, 49)( 35, 48)( 70, 79)( 71, 78)( 72, 77)( 73, 76)( 74, 75)( 80, 91)
( 81,101)( 82,100)( 83, 99)( 84, 98)( 85, 97)( 86, 96)( 87, 95)( 88, 94)
( 89, 93)( 90, 92);
s3 := Sym(101)!( 3, 15)( 4, 14)( 5, 24)( 6, 23)( 7, 22)( 8, 21)( 9, 20)
( 10, 19)( 11, 18)( 12, 17)( 13, 16)( 25, 26)( 27, 35)( 28, 34)( 29, 33)
( 30, 32)( 36, 81)( 37, 80)( 38, 90)( 39, 89)( 40, 88)( 41, 87)( 42, 86)
( 43, 85)( 44, 84)( 45, 83)( 46, 82)( 47, 70)( 48, 69)( 49, 79)( 50, 78)
( 51, 77)( 52, 76)( 53, 75)( 54, 74)( 55, 73)( 56, 72)( 57, 71)( 58, 92)
( 59, 91)( 60,101)( 61,100)( 62, 99)( 63, 98)( 64, 97)( 65, 96)( 66, 95)
( 67, 94)( 68, 93);
poly := sub<Sym(101)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope