include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,52,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,52,2}*832
if this polytope has a name.
Group : SmallGroup(832,1158)
Rank : 4
Schlafli Type : {4,52,2}
Number of vertices, edges, etc : 4, 104, 52, 2
Order of s0s1s2s3 : 52
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,52,2,2} of size 1664
Vertex Figure Of :
{2,4,52,2} of size 1664
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,52,2}*416, {4,26,2}*416
4-fold quotients : {2,26,2}*208
8-fold quotients : {2,13,2}*104
13-fold quotients : {4,4,2}*64
26-fold quotients : {2,4,2}*32, {4,2,2}*32
52-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,52,4}*1664, {8,52,2}*1664a, {4,104,2}*1664a, {8,52,2}*1664b, {4,104,2}*1664b, {4,52,2}*1664
Permutation Representation (GAP) :
s0 := ( 53, 66)( 54, 67)( 55, 68)( 56, 69)( 57, 70)( 58, 71)( 59, 72)( 60, 73)
( 61, 74)( 62, 75)( 63, 76)( 64, 77)( 65, 78)( 79, 92)( 80, 93)( 81, 94)
( 82, 95)( 83, 96)( 84, 97)( 85, 98)( 86, 99)( 87,100)( 88,101)( 89,102)
( 90,103)( 91,104);;
s1 := ( 1, 53)( 2, 65)( 3, 64)( 4, 63)( 5, 62)( 6, 61)( 7, 60)( 8, 59)
( 9, 58)( 10, 57)( 11, 56)( 12, 55)( 13, 54)( 14, 66)( 15, 78)( 16, 77)
( 17, 76)( 18, 75)( 19, 74)( 20, 73)( 21, 72)( 22, 71)( 23, 70)( 24, 69)
( 25, 68)( 26, 67)( 27, 79)( 28, 91)( 29, 90)( 30, 89)( 31, 88)( 32, 87)
( 33, 86)( 34, 85)( 35, 84)( 36, 83)( 37, 82)( 38, 81)( 39, 80)( 40, 92)
( 41,104)( 42,103)( 43,102)( 44,101)( 45,100)( 46, 99)( 47, 98)( 48, 97)
( 49, 96)( 50, 95)( 51, 94)( 52, 93);;
s2 := ( 1, 2)( 3, 13)( 4, 12)( 5, 11)( 6, 10)( 7, 9)( 14, 15)( 16, 26)
( 17, 25)( 18, 24)( 19, 23)( 20, 22)( 27, 28)( 29, 39)( 30, 38)( 31, 37)
( 32, 36)( 33, 35)( 40, 41)( 42, 52)( 43, 51)( 44, 50)( 45, 49)( 46, 48)
( 53, 80)( 54, 79)( 55, 91)( 56, 90)( 57, 89)( 58, 88)( 59, 87)( 60, 86)
( 61, 85)( 62, 84)( 63, 83)( 64, 82)( 65, 81)( 66, 93)( 67, 92)( 68,104)
( 69,103)( 70,102)( 71,101)( 72,100)( 73, 99)( 74, 98)( 75, 97)( 76, 96)
( 77, 95)( 78, 94);;
s3 := (105,106);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(106)!( 53, 66)( 54, 67)( 55, 68)( 56, 69)( 57, 70)( 58, 71)( 59, 72)
( 60, 73)( 61, 74)( 62, 75)( 63, 76)( 64, 77)( 65, 78)( 79, 92)( 80, 93)
( 81, 94)( 82, 95)( 83, 96)( 84, 97)( 85, 98)( 86, 99)( 87,100)( 88,101)
( 89,102)( 90,103)( 91,104);
s1 := Sym(106)!( 1, 53)( 2, 65)( 3, 64)( 4, 63)( 5, 62)( 6, 61)( 7, 60)
( 8, 59)( 9, 58)( 10, 57)( 11, 56)( 12, 55)( 13, 54)( 14, 66)( 15, 78)
( 16, 77)( 17, 76)( 18, 75)( 19, 74)( 20, 73)( 21, 72)( 22, 71)( 23, 70)
( 24, 69)( 25, 68)( 26, 67)( 27, 79)( 28, 91)( 29, 90)( 30, 89)( 31, 88)
( 32, 87)( 33, 86)( 34, 85)( 35, 84)( 36, 83)( 37, 82)( 38, 81)( 39, 80)
( 40, 92)( 41,104)( 42,103)( 43,102)( 44,101)( 45,100)( 46, 99)( 47, 98)
( 48, 97)( 49, 96)( 50, 95)( 51, 94)( 52, 93);
s2 := Sym(106)!( 1, 2)( 3, 13)( 4, 12)( 5, 11)( 6, 10)( 7, 9)( 14, 15)
( 16, 26)( 17, 25)( 18, 24)( 19, 23)( 20, 22)( 27, 28)( 29, 39)( 30, 38)
( 31, 37)( 32, 36)( 33, 35)( 40, 41)( 42, 52)( 43, 51)( 44, 50)( 45, 49)
( 46, 48)( 53, 80)( 54, 79)( 55, 91)( 56, 90)( 57, 89)( 58, 88)( 59, 87)
( 60, 86)( 61, 85)( 62, 84)( 63, 83)( 64, 82)( 65, 81)( 66, 93)( 67, 92)
( 68,104)( 69,103)( 70,102)( 71,101)( 72,100)( 73, 99)( 74, 98)( 75, 97)
( 76, 96)( 77, 95)( 78, 94);
s3 := Sym(106)!(105,106);
poly := sub<Sym(106)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope