include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {52,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {52,2}*208
if this polytope has a name.
Group : SmallGroup(208,37)
Rank : 3
Schlafli Type : {52,2}
Number of vertices, edges, etc : 52, 52, 2
Order of s0s1s2 : 52
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{52,2,2} of size 416
{52,2,3} of size 624
{52,2,4} of size 832
{52,2,5} of size 1040
{52,2,6} of size 1248
{52,2,7} of size 1456
{52,2,8} of size 1664
{52,2,9} of size 1872
Vertex Figure Of :
{2,52,2} of size 416
{4,52,2} of size 832
{6,52,2} of size 1248
{6,52,2} of size 1248
{8,52,2} of size 1664
{8,52,2} of size 1664
{4,52,2} of size 1664
{6,52,2} of size 1872
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {26,2}*104
4-fold quotients : {13,2}*52
13-fold quotients : {4,2}*16
26-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {52,4}*416, {104,2}*416
3-fold covers : {52,6}*624a, {156,2}*624
4-fold covers : {104,4}*832a, {52,4}*832, {104,4}*832b, {52,8}*832a, {52,8}*832b, {208,2}*832
5-fold covers : {52,10}*1040, {260,2}*1040
6-fold covers : {104,6}*1248, {52,12}*1248, {156,4}*1248a, {312,2}*1248
7-fold covers : {52,14}*1456, {364,2}*1456
8-fold covers : {52,8}*1664a, {104,4}*1664a, {104,8}*1664a, {104,8}*1664b, {104,8}*1664c, {104,8}*1664d, {52,16}*1664a, {208,4}*1664a, {52,16}*1664b, {208,4}*1664b, {52,4}*1664, {104,4}*1664b, {52,8}*1664b, {416,2}*1664
9-fold covers : {52,18}*1872a, {468,2}*1872, {156,6}*1872a, {156,6}*1872b, {156,6}*1872c, {52,6}*1872
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12)(13,14)(15,18)(16,17)(19,20)(21,22)
(23,26)(24,25)(27,28)(29,30)(31,34)(32,33)(35,36)(37,38)(39,42)(40,41)(43,44)
(45,46)(47,50)(48,49)(51,52);;
s1 := ( 1, 7)( 2, 4)( 3,13)( 5,15)( 6, 9)( 8,11)(10,21)(12,23)(14,17)(16,19)
(18,29)(20,31)(22,25)(24,27)(26,37)(28,39)(30,33)(32,35)(34,45)(36,47)(38,41)
(40,43)(42,51)(44,48)(46,49)(50,52);;
s2 := (53,54);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(54)!( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12)(13,14)(15,18)(16,17)(19,20)
(21,22)(23,26)(24,25)(27,28)(29,30)(31,34)(32,33)(35,36)(37,38)(39,42)(40,41)
(43,44)(45,46)(47,50)(48,49)(51,52);
s1 := Sym(54)!( 1, 7)( 2, 4)( 3,13)( 5,15)( 6, 9)( 8,11)(10,21)(12,23)(14,17)
(16,19)(18,29)(20,31)(22,25)(24,27)(26,37)(28,39)(30,33)(32,35)(34,45)(36,47)
(38,41)(40,43)(42,51)(44,48)(46,49)(50,52);
s2 := Sym(54)!(53,54);
poly := sub<Sym(54)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope