include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {28,16}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {28,16}*896a
Also Known As : {28,16|2}. if this polytope has another name.
Group : SmallGroup(896,1711)
Rank : 3
Schlafli Type : {28,16}
Number of vertices, edges, etc : 28, 224, 16
Order of s0s1s2 : 112
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{28,16,2} of size 1792
Vertex Figure Of :
{2,28,16} of size 1792
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {28,8}*448a, {14,16}*448
4-fold quotients : {28,4}*224, {14,8}*224
7-fold quotients : {4,16}*128a
8-fold quotients : {28,2}*112, {14,4}*112
14-fold quotients : {4,8}*64a, {2,16}*64
16-fold quotients : {14,2}*56
28-fold quotients : {4,4}*32, {2,8}*32
32-fold quotients : {7,2}*28
56-fold quotients : {2,4}*16, {4,2}*16
112-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {28,16}*1792a, {56,16}*1792c, {56,16}*1792d, {28,32}*1792a, {28,32}*1792b
Permutation Representation (GAP) :
s0 := ( 1,113)( 2,119)( 3,118)( 4,117)( 5,116)( 6,115)( 7,114)( 8,120)
( 9,126)( 10,125)( 11,124)( 12,123)( 13,122)( 14,121)( 15,127)( 16,133)
( 17,132)( 18,131)( 19,130)( 20,129)( 21,128)( 22,134)( 23,140)( 24,139)
( 25,138)( 26,137)( 27,136)( 28,135)( 29,141)( 30,147)( 31,146)( 32,145)
( 33,144)( 34,143)( 35,142)( 36,148)( 37,154)( 38,153)( 39,152)( 40,151)
( 41,150)( 42,149)( 43,155)( 44,161)( 45,160)( 46,159)( 47,158)( 48,157)
( 49,156)( 50,162)( 51,168)( 52,167)( 53,166)( 54,165)( 55,164)( 56,163)
( 57,169)( 58,175)( 59,174)( 60,173)( 61,172)( 62,171)( 63,170)( 64,176)
( 65,182)( 66,181)( 67,180)( 68,179)( 69,178)( 70,177)( 71,183)( 72,189)
( 73,188)( 74,187)( 75,186)( 76,185)( 77,184)( 78,190)( 79,196)( 80,195)
( 81,194)( 82,193)( 83,192)( 84,191)( 85,197)( 86,203)( 87,202)( 88,201)
( 89,200)( 90,199)( 91,198)( 92,204)( 93,210)( 94,209)( 95,208)( 96,207)
( 97,206)( 98,205)( 99,211)(100,217)(101,216)(102,215)(103,214)(104,213)
(105,212)(106,218)(107,224)(108,223)(109,222)(110,221)(111,220)(112,219)
(225,337)(226,343)(227,342)(228,341)(229,340)(230,339)(231,338)(232,344)
(233,350)(234,349)(235,348)(236,347)(237,346)(238,345)(239,351)(240,357)
(241,356)(242,355)(243,354)(244,353)(245,352)(246,358)(247,364)(248,363)
(249,362)(250,361)(251,360)(252,359)(253,365)(254,371)(255,370)(256,369)
(257,368)(258,367)(259,366)(260,372)(261,378)(262,377)(263,376)(264,375)
(265,374)(266,373)(267,379)(268,385)(269,384)(270,383)(271,382)(272,381)
(273,380)(274,386)(275,392)(276,391)(277,390)(278,389)(279,388)(280,387)
(281,393)(282,399)(283,398)(284,397)(285,396)(286,395)(287,394)(288,400)
(289,406)(290,405)(291,404)(292,403)(293,402)(294,401)(295,407)(296,413)
(297,412)(298,411)(299,410)(300,409)(301,408)(302,414)(303,420)(304,419)
(305,418)(306,417)(307,416)(308,415)(309,421)(310,427)(311,426)(312,425)
(313,424)(314,423)(315,422)(316,428)(317,434)(318,433)(319,432)(320,431)
(321,430)(322,429)(323,435)(324,441)(325,440)(326,439)(327,438)(328,437)
(329,436)(330,442)(331,448)(332,447)(333,446)(334,445)(335,444)(336,443);;
s1 := ( 1, 2)( 3, 7)( 4, 6)( 8, 9)( 10, 14)( 11, 13)( 15, 23)( 16, 22)
( 17, 28)( 18, 27)( 19, 26)( 20, 25)( 21, 24)( 29, 30)( 31, 35)( 32, 34)
( 36, 37)( 38, 42)( 39, 41)( 43, 51)( 44, 50)( 45, 56)( 46, 55)( 47, 54)
( 48, 53)( 49, 52)( 57, 72)( 58, 71)( 59, 77)( 60, 76)( 61, 75)( 62, 74)
( 63, 73)( 64, 79)( 65, 78)( 66, 84)( 67, 83)( 68, 82)( 69, 81)( 70, 80)
( 85,100)( 86, 99)( 87,105)( 88,104)( 89,103)( 90,102)( 91,101)( 92,107)
( 93,106)( 94,112)( 95,111)( 96,110)( 97,109)( 98,108)(113,142)(114,141)
(115,147)(116,146)(117,145)(118,144)(119,143)(120,149)(121,148)(122,154)
(123,153)(124,152)(125,151)(126,150)(127,163)(128,162)(129,168)(130,167)
(131,166)(132,165)(133,164)(134,156)(135,155)(136,161)(137,160)(138,159)
(139,158)(140,157)(169,212)(170,211)(171,217)(172,216)(173,215)(174,214)
(175,213)(176,219)(177,218)(178,224)(179,223)(180,222)(181,221)(182,220)
(183,198)(184,197)(185,203)(186,202)(187,201)(188,200)(189,199)(190,205)
(191,204)(192,210)(193,209)(194,208)(195,207)(196,206)(225,282)(226,281)
(227,287)(228,286)(229,285)(230,284)(231,283)(232,289)(233,288)(234,294)
(235,293)(236,292)(237,291)(238,290)(239,303)(240,302)(241,308)(242,307)
(243,306)(244,305)(245,304)(246,296)(247,295)(248,301)(249,300)(250,299)
(251,298)(252,297)(253,310)(254,309)(255,315)(256,314)(257,313)(258,312)
(259,311)(260,317)(261,316)(262,322)(263,321)(264,320)(265,319)(266,318)
(267,331)(268,330)(269,336)(270,335)(271,334)(272,333)(273,332)(274,324)
(275,323)(276,329)(277,328)(278,327)(279,326)(280,325)(337,422)(338,421)
(339,427)(340,426)(341,425)(342,424)(343,423)(344,429)(345,428)(346,434)
(347,433)(348,432)(349,431)(350,430)(351,443)(352,442)(353,448)(354,447)
(355,446)(356,445)(357,444)(358,436)(359,435)(360,441)(361,440)(362,439)
(363,438)(364,437)(365,394)(366,393)(367,399)(368,398)(369,397)(370,396)
(371,395)(372,401)(373,400)(374,406)(375,405)(376,404)(377,403)(378,402)
(379,415)(380,414)(381,420)(382,419)(383,418)(384,417)(385,416)(386,408)
(387,407)(388,413)(389,412)(390,411)(391,410)(392,409);;
s2 := ( 1,225)( 2,226)( 3,227)( 4,228)( 5,229)( 6,230)( 7,231)( 8,232)
( 9,233)( 10,234)( 11,235)( 12,236)( 13,237)( 14,238)( 15,246)( 16,247)
( 17,248)( 18,249)( 19,250)( 20,251)( 21,252)( 22,239)( 23,240)( 24,241)
( 25,242)( 26,243)( 27,244)( 28,245)( 29,253)( 30,254)( 31,255)( 32,256)
( 33,257)( 34,258)( 35,259)( 36,260)( 37,261)( 38,262)( 39,263)( 40,264)
( 41,265)( 42,266)( 43,274)( 44,275)( 45,276)( 46,277)( 47,278)( 48,279)
( 49,280)( 50,267)( 51,268)( 52,269)( 53,270)( 54,271)( 55,272)( 56,273)
( 57,295)( 58,296)( 59,297)( 60,298)( 61,299)( 62,300)( 63,301)( 64,302)
( 65,303)( 66,304)( 67,305)( 68,306)( 69,307)( 70,308)( 71,281)( 72,282)
( 73,283)( 74,284)( 75,285)( 76,286)( 77,287)( 78,288)( 79,289)( 80,290)
( 81,291)( 82,292)( 83,293)( 84,294)( 85,323)( 86,324)( 87,325)( 88,326)
( 89,327)( 90,328)( 91,329)( 92,330)( 93,331)( 94,332)( 95,333)( 96,334)
( 97,335)( 98,336)( 99,309)(100,310)(101,311)(102,312)(103,313)(104,314)
(105,315)(106,316)(107,317)(108,318)(109,319)(110,320)(111,321)(112,322)
(113,337)(114,338)(115,339)(116,340)(117,341)(118,342)(119,343)(120,344)
(121,345)(122,346)(123,347)(124,348)(125,349)(126,350)(127,358)(128,359)
(129,360)(130,361)(131,362)(132,363)(133,364)(134,351)(135,352)(136,353)
(137,354)(138,355)(139,356)(140,357)(141,365)(142,366)(143,367)(144,368)
(145,369)(146,370)(147,371)(148,372)(149,373)(150,374)(151,375)(152,376)
(153,377)(154,378)(155,386)(156,387)(157,388)(158,389)(159,390)(160,391)
(161,392)(162,379)(163,380)(164,381)(165,382)(166,383)(167,384)(168,385)
(169,407)(170,408)(171,409)(172,410)(173,411)(174,412)(175,413)(176,414)
(177,415)(178,416)(179,417)(180,418)(181,419)(182,420)(183,393)(184,394)
(185,395)(186,396)(187,397)(188,398)(189,399)(190,400)(191,401)(192,402)
(193,403)(194,404)(195,405)(196,406)(197,435)(198,436)(199,437)(200,438)
(201,439)(202,440)(203,441)(204,442)(205,443)(206,444)(207,445)(208,446)
(209,447)(210,448)(211,421)(212,422)(213,423)(214,424)(215,425)(216,426)
(217,427)(218,428)(219,429)(220,430)(221,431)(222,432)(223,433)(224,434);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(448)!( 1,113)( 2,119)( 3,118)( 4,117)( 5,116)( 6,115)( 7,114)
( 8,120)( 9,126)( 10,125)( 11,124)( 12,123)( 13,122)( 14,121)( 15,127)
( 16,133)( 17,132)( 18,131)( 19,130)( 20,129)( 21,128)( 22,134)( 23,140)
( 24,139)( 25,138)( 26,137)( 27,136)( 28,135)( 29,141)( 30,147)( 31,146)
( 32,145)( 33,144)( 34,143)( 35,142)( 36,148)( 37,154)( 38,153)( 39,152)
( 40,151)( 41,150)( 42,149)( 43,155)( 44,161)( 45,160)( 46,159)( 47,158)
( 48,157)( 49,156)( 50,162)( 51,168)( 52,167)( 53,166)( 54,165)( 55,164)
( 56,163)( 57,169)( 58,175)( 59,174)( 60,173)( 61,172)( 62,171)( 63,170)
( 64,176)( 65,182)( 66,181)( 67,180)( 68,179)( 69,178)( 70,177)( 71,183)
( 72,189)( 73,188)( 74,187)( 75,186)( 76,185)( 77,184)( 78,190)( 79,196)
( 80,195)( 81,194)( 82,193)( 83,192)( 84,191)( 85,197)( 86,203)( 87,202)
( 88,201)( 89,200)( 90,199)( 91,198)( 92,204)( 93,210)( 94,209)( 95,208)
( 96,207)( 97,206)( 98,205)( 99,211)(100,217)(101,216)(102,215)(103,214)
(104,213)(105,212)(106,218)(107,224)(108,223)(109,222)(110,221)(111,220)
(112,219)(225,337)(226,343)(227,342)(228,341)(229,340)(230,339)(231,338)
(232,344)(233,350)(234,349)(235,348)(236,347)(237,346)(238,345)(239,351)
(240,357)(241,356)(242,355)(243,354)(244,353)(245,352)(246,358)(247,364)
(248,363)(249,362)(250,361)(251,360)(252,359)(253,365)(254,371)(255,370)
(256,369)(257,368)(258,367)(259,366)(260,372)(261,378)(262,377)(263,376)
(264,375)(265,374)(266,373)(267,379)(268,385)(269,384)(270,383)(271,382)
(272,381)(273,380)(274,386)(275,392)(276,391)(277,390)(278,389)(279,388)
(280,387)(281,393)(282,399)(283,398)(284,397)(285,396)(286,395)(287,394)
(288,400)(289,406)(290,405)(291,404)(292,403)(293,402)(294,401)(295,407)
(296,413)(297,412)(298,411)(299,410)(300,409)(301,408)(302,414)(303,420)
(304,419)(305,418)(306,417)(307,416)(308,415)(309,421)(310,427)(311,426)
(312,425)(313,424)(314,423)(315,422)(316,428)(317,434)(318,433)(319,432)
(320,431)(321,430)(322,429)(323,435)(324,441)(325,440)(326,439)(327,438)
(328,437)(329,436)(330,442)(331,448)(332,447)(333,446)(334,445)(335,444)
(336,443);
s1 := Sym(448)!( 1, 2)( 3, 7)( 4, 6)( 8, 9)( 10, 14)( 11, 13)( 15, 23)
( 16, 22)( 17, 28)( 18, 27)( 19, 26)( 20, 25)( 21, 24)( 29, 30)( 31, 35)
( 32, 34)( 36, 37)( 38, 42)( 39, 41)( 43, 51)( 44, 50)( 45, 56)( 46, 55)
( 47, 54)( 48, 53)( 49, 52)( 57, 72)( 58, 71)( 59, 77)( 60, 76)( 61, 75)
( 62, 74)( 63, 73)( 64, 79)( 65, 78)( 66, 84)( 67, 83)( 68, 82)( 69, 81)
( 70, 80)( 85,100)( 86, 99)( 87,105)( 88,104)( 89,103)( 90,102)( 91,101)
( 92,107)( 93,106)( 94,112)( 95,111)( 96,110)( 97,109)( 98,108)(113,142)
(114,141)(115,147)(116,146)(117,145)(118,144)(119,143)(120,149)(121,148)
(122,154)(123,153)(124,152)(125,151)(126,150)(127,163)(128,162)(129,168)
(130,167)(131,166)(132,165)(133,164)(134,156)(135,155)(136,161)(137,160)
(138,159)(139,158)(140,157)(169,212)(170,211)(171,217)(172,216)(173,215)
(174,214)(175,213)(176,219)(177,218)(178,224)(179,223)(180,222)(181,221)
(182,220)(183,198)(184,197)(185,203)(186,202)(187,201)(188,200)(189,199)
(190,205)(191,204)(192,210)(193,209)(194,208)(195,207)(196,206)(225,282)
(226,281)(227,287)(228,286)(229,285)(230,284)(231,283)(232,289)(233,288)
(234,294)(235,293)(236,292)(237,291)(238,290)(239,303)(240,302)(241,308)
(242,307)(243,306)(244,305)(245,304)(246,296)(247,295)(248,301)(249,300)
(250,299)(251,298)(252,297)(253,310)(254,309)(255,315)(256,314)(257,313)
(258,312)(259,311)(260,317)(261,316)(262,322)(263,321)(264,320)(265,319)
(266,318)(267,331)(268,330)(269,336)(270,335)(271,334)(272,333)(273,332)
(274,324)(275,323)(276,329)(277,328)(278,327)(279,326)(280,325)(337,422)
(338,421)(339,427)(340,426)(341,425)(342,424)(343,423)(344,429)(345,428)
(346,434)(347,433)(348,432)(349,431)(350,430)(351,443)(352,442)(353,448)
(354,447)(355,446)(356,445)(357,444)(358,436)(359,435)(360,441)(361,440)
(362,439)(363,438)(364,437)(365,394)(366,393)(367,399)(368,398)(369,397)
(370,396)(371,395)(372,401)(373,400)(374,406)(375,405)(376,404)(377,403)
(378,402)(379,415)(380,414)(381,420)(382,419)(383,418)(384,417)(385,416)
(386,408)(387,407)(388,413)(389,412)(390,411)(391,410)(392,409);
s2 := Sym(448)!( 1,225)( 2,226)( 3,227)( 4,228)( 5,229)( 6,230)( 7,231)
( 8,232)( 9,233)( 10,234)( 11,235)( 12,236)( 13,237)( 14,238)( 15,246)
( 16,247)( 17,248)( 18,249)( 19,250)( 20,251)( 21,252)( 22,239)( 23,240)
( 24,241)( 25,242)( 26,243)( 27,244)( 28,245)( 29,253)( 30,254)( 31,255)
( 32,256)( 33,257)( 34,258)( 35,259)( 36,260)( 37,261)( 38,262)( 39,263)
( 40,264)( 41,265)( 42,266)( 43,274)( 44,275)( 45,276)( 46,277)( 47,278)
( 48,279)( 49,280)( 50,267)( 51,268)( 52,269)( 53,270)( 54,271)( 55,272)
( 56,273)( 57,295)( 58,296)( 59,297)( 60,298)( 61,299)( 62,300)( 63,301)
( 64,302)( 65,303)( 66,304)( 67,305)( 68,306)( 69,307)( 70,308)( 71,281)
( 72,282)( 73,283)( 74,284)( 75,285)( 76,286)( 77,287)( 78,288)( 79,289)
( 80,290)( 81,291)( 82,292)( 83,293)( 84,294)( 85,323)( 86,324)( 87,325)
( 88,326)( 89,327)( 90,328)( 91,329)( 92,330)( 93,331)( 94,332)( 95,333)
( 96,334)( 97,335)( 98,336)( 99,309)(100,310)(101,311)(102,312)(103,313)
(104,314)(105,315)(106,316)(107,317)(108,318)(109,319)(110,320)(111,321)
(112,322)(113,337)(114,338)(115,339)(116,340)(117,341)(118,342)(119,343)
(120,344)(121,345)(122,346)(123,347)(124,348)(125,349)(126,350)(127,358)
(128,359)(129,360)(130,361)(131,362)(132,363)(133,364)(134,351)(135,352)
(136,353)(137,354)(138,355)(139,356)(140,357)(141,365)(142,366)(143,367)
(144,368)(145,369)(146,370)(147,371)(148,372)(149,373)(150,374)(151,375)
(152,376)(153,377)(154,378)(155,386)(156,387)(157,388)(158,389)(159,390)
(160,391)(161,392)(162,379)(163,380)(164,381)(165,382)(166,383)(167,384)
(168,385)(169,407)(170,408)(171,409)(172,410)(173,411)(174,412)(175,413)
(176,414)(177,415)(178,416)(179,417)(180,418)(181,419)(182,420)(183,393)
(184,394)(185,395)(186,396)(187,397)(188,398)(189,399)(190,400)(191,401)
(192,402)(193,403)(194,404)(195,405)(196,406)(197,435)(198,436)(199,437)
(200,438)(201,439)(202,440)(203,441)(204,442)(205,443)(206,444)(207,445)
(208,446)(209,447)(210,448)(211,421)(212,422)(213,423)(214,424)(215,425)
(216,426)(217,427)(218,428)(219,429)(220,430)(221,431)(222,432)(223,433)
(224,434);
poly := sub<Sym(448)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope