include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,2,58}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,58}*928
if this polytope has a name.
Group : SmallGroup(928,234)
Rank : 5
Schlafli Type : {2,2,2,58}
Number of vertices, edges, etc : 2, 2, 2, 58, 58
Order of s0s1s2s3s4 : 58
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,2,2,58,2} of size 1856
Vertex Figure Of :
{2,2,2,2,58} of size 1856
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,2,29}*464
29-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,2,4,58}*1856, {2,4,2,58}*1856, {4,2,2,58}*1856, {2,2,2,116}*1856
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := ( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)
(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)
(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64);;
s4 := ( 7,11)( 8, 9)(10,15)(12,13)(14,19)(16,17)(18,23)(20,21)(22,27)(24,25)
(26,31)(28,29)(30,35)(32,33)(34,39)(36,37)(38,43)(40,41)(42,47)(44,45)(46,51)
(48,49)(50,55)(52,53)(54,59)(56,57)(58,63)(60,61)(62,64);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(64)!(1,2);
s1 := Sym(64)!(3,4);
s2 := Sym(64)!(5,6);
s3 := Sym(64)!( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)
(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)
(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64);
s4 := Sym(64)!( 7,11)( 8, 9)(10,15)(12,13)(14,19)(16,17)(18,23)(20,21)(22,27)
(24,25)(26,31)(28,29)(30,35)(32,33)(34,39)(36,37)(38,43)(40,41)(42,47)(44,45)
(46,51)(48,49)(50,55)(52,53)(54,59)(56,57)(58,63)(60,61)(62,64);
poly := sub<Sym(64)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope