include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,39}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,39}*936
if this polytope has a name.
Group : SmallGroup(936,212)
Rank : 4
Schlafli Type : {2,6,39}
Number of vertices, edges, etc : 2, 6, 117, 39
Order of s0s1s2s3 : 78
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,6,39,2} of size 1872
Vertex Figure Of :
{2,2,6,39} of size 1872
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,2,39}*312
9-fold quotients : {2,2,13}*104
13-fold quotients : {2,6,3}*72
39-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,6,39}*1872, {2,6,78}*1872c
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 42, 81)( 43, 82)( 44, 83)( 45, 84)( 46, 85)( 47, 86)( 48, 87)( 49, 88)
( 50, 89)( 51, 90)( 52, 91)( 53, 92)( 54, 93)( 55, 94)( 56, 95)( 57, 96)
( 58, 97)( 59, 98)( 60, 99)( 61,100)( 62,101)( 63,102)( 64,103)( 65,104)
( 66,105)( 67,106)( 68,107)( 69,108)( 70,109)( 71,110)( 72,111)( 73,112)
( 74,113)( 75,114)( 76,115)( 77,116)( 78,117)( 79,118)( 80,119);;
s2 := ( 3, 42)( 4, 54)( 5, 53)( 6, 52)( 7, 51)( 8, 50)( 9, 49)( 10, 48)
( 11, 47)( 12, 46)( 13, 45)( 14, 44)( 15, 43)( 16, 68)( 17, 80)( 18, 79)
( 19, 78)( 20, 77)( 21, 76)( 22, 75)( 23, 74)( 24, 73)( 25, 72)( 26, 71)
( 27, 70)( 28, 69)( 29, 55)( 30, 67)( 31, 66)( 32, 65)( 33, 64)( 34, 63)
( 35, 62)( 36, 61)( 37, 60)( 38, 59)( 39, 58)( 40, 57)( 41, 56)( 82, 93)
( 83, 92)( 84, 91)( 85, 90)( 86, 89)( 87, 88)( 94,107)( 95,119)( 96,118)
( 97,117)( 98,116)( 99,115)(100,114)(101,113)(102,112)(103,111)(104,110)
(105,109)(106,108);;
s3 := ( 3, 17)( 4, 16)( 5, 28)( 6, 27)( 7, 26)( 8, 25)( 9, 24)( 10, 23)
( 11, 22)( 12, 21)( 13, 20)( 14, 19)( 15, 18)( 29, 30)( 31, 41)( 32, 40)
( 33, 39)( 34, 38)( 35, 37)( 42, 95)( 43, 94)( 44,106)( 45,105)( 46,104)
( 47,103)( 48,102)( 49,101)( 50,100)( 51, 99)( 52, 98)( 53, 97)( 54, 96)
( 55, 82)( 56, 81)( 57, 93)( 58, 92)( 59, 91)( 60, 90)( 61, 89)( 62, 88)
( 63, 87)( 64, 86)( 65, 85)( 66, 84)( 67, 83)( 68,108)( 69,107)( 70,119)
( 71,118)( 72,117)( 73,116)( 74,115)( 75,114)( 76,113)( 77,112)( 78,111)
( 79,110)( 80,109);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(119)!(1,2);
s1 := Sym(119)!( 42, 81)( 43, 82)( 44, 83)( 45, 84)( 46, 85)( 47, 86)( 48, 87)
( 49, 88)( 50, 89)( 51, 90)( 52, 91)( 53, 92)( 54, 93)( 55, 94)( 56, 95)
( 57, 96)( 58, 97)( 59, 98)( 60, 99)( 61,100)( 62,101)( 63,102)( 64,103)
( 65,104)( 66,105)( 67,106)( 68,107)( 69,108)( 70,109)( 71,110)( 72,111)
( 73,112)( 74,113)( 75,114)( 76,115)( 77,116)( 78,117)( 79,118)( 80,119);
s2 := Sym(119)!( 3, 42)( 4, 54)( 5, 53)( 6, 52)( 7, 51)( 8, 50)( 9, 49)
( 10, 48)( 11, 47)( 12, 46)( 13, 45)( 14, 44)( 15, 43)( 16, 68)( 17, 80)
( 18, 79)( 19, 78)( 20, 77)( 21, 76)( 22, 75)( 23, 74)( 24, 73)( 25, 72)
( 26, 71)( 27, 70)( 28, 69)( 29, 55)( 30, 67)( 31, 66)( 32, 65)( 33, 64)
( 34, 63)( 35, 62)( 36, 61)( 37, 60)( 38, 59)( 39, 58)( 40, 57)( 41, 56)
( 82, 93)( 83, 92)( 84, 91)( 85, 90)( 86, 89)( 87, 88)( 94,107)( 95,119)
( 96,118)( 97,117)( 98,116)( 99,115)(100,114)(101,113)(102,112)(103,111)
(104,110)(105,109)(106,108);
s3 := Sym(119)!( 3, 17)( 4, 16)( 5, 28)( 6, 27)( 7, 26)( 8, 25)( 9, 24)
( 10, 23)( 11, 22)( 12, 21)( 13, 20)( 14, 19)( 15, 18)( 29, 30)( 31, 41)
( 32, 40)( 33, 39)( 34, 38)( 35, 37)( 42, 95)( 43, 94)( 44,106)( 45,105)
( 46,104)( 47,103)( 48,102)( 49,101)( 50,100)( 51, 99)( 52, 98)( 53, 97)
( 54, 96)( 55, 82)( 56, 81)( 57, 93)( 58, 92)( 59, 91)( 60, 90)( 61, 89)
( 62, 88)( 63, 87)( 64, 86)( 65, 85)( 66, 84)( 67, 83)( 68,108)( 69,107)
( 70,119)( 71,118)( 72,117)( 73,116)( 74,115)( 75,114)( 76,113)( 77,112)
( 78,111)( 79,110)( 80,109);
poly := sub<Sym(119)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope