Polytope of Type {8,60}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,60}*960a
Also Known As : {8,60|2}. if this polytope has another name.
Group : SmallGroup(960,5069)
Rank : 3
Schlafli Type : {8,60}
Number of vertices, edges, etc : 8, 240, 60
Order of s0s1s2 : 120
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {8,60,2} of size 1920
Vertex Figure Of :
   {2,8,60} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,60}*480a, {8,30}*480
   3-fold quotients : {8,20}*320a
   4-fold quotients : {2,60}*240, {4,30}*240a
   5-fold quotients : {8,12}*192a
   6-fold quotients : {4,20}*160, {8,10}*160
   8-fold quotients : {2,30}*120
   10-fold quotients : {4,12}*96a, {8,6}*96
   12-fold quotients : {2,20}*80, {4,10}*80
   15-fold quotients : {8,4}*64a
   16-fold quotients : {2,15}*60
   20-fold quotients : {2,12}*48, {4,6}*48a
   24-fold quotients : {2,10}*40
   30-fold quotients : {4,4}*32, {8,2}*32
   40-fold quotients : {2,6}*24
   48-fold quotients : {2,5}*20
   60-fold quotients : {2,4}*16, {4,2}*16
   80-fold quotients : {2,3}*12
   120-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {8,60}*1920a, {8,120}*1920a, {8,120}*1920c, {16,60}*1920a, {16,60}*1920b
Permutation Representation (GAP) :
s0 := ( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)( 36, 51)( 37, 52)( 38, 53)
( 39, 54)( 40, 55)( 41, 56)( 42, 57)( 43, 58)( 44, 59)( 45, 60)( 91,106)
( 92,107)( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)( 99,114)
(100,115)(101,116)(102,117)(103,118)(104,119)(105,120)(121,151)(122,152)
(123,153)(124,154)(125,155)(126,156)(127,157)(128,158)(129,159)(130,160)
(131,161)(132,162)(133,163)(134,164)(135,165)(136,166)(137,167)(138,168)
(139,169)(140,170)(141,171)(142,172)(143,173)(144,174)(145,175)(146,176)
(147,177)(148,178)(149,179)(150,180)(181,211)(182,212)(183,213)(184,214)
(185,215)(186,216)(187,217)(188,218)(189,219)(190,220)(191,221)(192,222)
(193,223)(194,224)(195,225)(196,226)(197,227)(198,228)(199,229)(200,230)
(201,231)(202,232)(203,233)(204,234)(205,235)(206,236)(207,237)(208,238)
(209,239)(210,240);;
s1 := (  1,121)(  2,125)(  3,124)(  4,123)(  5,122)(  6,131)(  7,135)(  8,134)
(  9,133)( 10,132)( 11,126)( 12,130)( 13,129)( 14,128)( 15,127)( 16,136)
( 17,140)( 18,139)( 19,138)( 20,137)( 21,146)( 22,150)( 23,149)( 24,148)
( 25,147)( 26,141)( 27,145)( 28,144)( 29,143)( 30,142)( 31,166)( 32,170)
( 33,169)( 34,168)( 35,167)( 36,176)( 37,180)( 38,179)( 39,178)( 40,177)
( 41,171)( 42,175)( 43,174)( 44,173)( 45,172)( 46,151)( 47,155)( 48,154)
( 49,153)( 50,152)( 51,161)( 52,165)( 53,164)( 54,163)( 55,162)( 56,156)
( 57,160)( 58,159)( 59,158)( 60,157)( 61,181)( 62,185)( 63,184)( 64,183)
( 65,182)( 66,191)( 67,195)( 68,194)( 69,193)( 70,192)( 71,186)( 72,190)
( 73,189)( 74,188)( 75,187)( 76,196)( 77,200)( 78,199)( 79,198)( 80,197)
( 81,206)( 82,210)( 83,209)( 84,208)( 85,207)( 86,201)( 87,205)( 88,204)
( 89,203)( 90,202)( 91,226)( 92,230)( 93,229)( 94,228)( 95,227)( 96,236)
( 97,240)( 98,239)( 99,238)(100,237)(101,231)(102,235)(103,234)(104,233)
(105,232)(106,211)(107,215)(108,214)(109,213)(110,212)(111,221)(112,225)
(113,224)(114,223)(115,222)(116,216)(117,220)(118,219)(119,218)(120,217);;
s2 := (  1,  7)(  2,  6)(  3, 10)(  4,  9)(  5,  8)( 11, 12)( 13, 15)( 16, 22)
( 17, 21)( 18, 25)( 19, 24)( 20, 23)( 26, 27)( 28, 30)( 31, 37)( 32, 36)
( 33, 40)( 34, 39)( 35, 38)( 41, 42)( 43, 45)( 46, 52)( 47, 51)( 48, 55)
( 49, 54)( 50, 53)( 56, 57)( 58, 60)( 61, 67)( 62, 66)( 63, 70)( 64, 69)
( 65, 68)( 71, 72)( 73, 75)( 76, 82)( 77, 81)( 78, 85)( 79, 84)( 80, 83)
( 86, 87)( 88, 90)( 91, 97)( 92, 96)( 93,100)( 94, 99)( 95, 98)(101,102)
(103,105)(106,112)(107,111)(108,115)(109,114)(110,113)(116,117)(118,120)
(121,187)(122,186)(123,190)(124,189)(125,188)(126,182)(127,181)(128,185)
(129,184)(130,183)(131,192)(132,191)(133,195)(134,194)(135,193)(136,202)
(137,201)(138,205)(139,204)(140,203)(141,197)(142,196)(143,200)(144,199)
(145,198)(146,207)(147,206)(148,210)(149,209)(150,208)(151,217)(152,216)
(153,220)(154,219)(155,218)(156,212)(157,211)(158,215)(159,214)(160,213)
(161,222)(162,221)(163,225)(164,224)(165,223)(166,232)(167,231)(168,235)
(169,234)(170,233)(171,227)(172,226)(173,230)(174,229)(175,228)(176,237)
(177,236)(178,240)(179,239)(180,238);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(240)!( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)( 36, 51)( 37, 52)
( 38, 53)( 39, 54)( 40, 55)( 41, 56)( 42, 57)( 43, 58)( 44, 59)( 45, 60)
( 91,106)( 92,107)( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)
( 99,114)(100,115)(101,116)(102,117)(103,118)(104,119)(105,120)(121,151)
(122,152)(123,153)(124,154)(125,155)(126,156)(127,157)(128,158)(129,159)
(130,160)(131,161)(132,162)(133,163)(134,164)(135,165)(136,166)(137,167)
(138,168)(139,169)(140,170)(141,171)(142,172)(143,173)(144,174)(145,175)
(146,176)(147,177)(148,178)(149,179)(150,180)(181,211)(182,212)(183,213)
(184,214)(185,215)(186,216)(187,217)(188,218)(189,219)(190,220)(191,221)
(192,222)(193,223)(194,224)(195,225)(196,226)(197,227)(198,228)(199,229)
(200,230)(201,231)(202,232)(203,233)(204,234)(205,235)(206,236)(207,237)
(208,238)(209,239)(210,240);
s1 := Sym(240)!(  1,121)(  2,125)(  3,124)(  4,123)(  5,122)(  6,131)(  7,135)
(  8,134)(  9,133)( 10,132)( 11,126)( 12,130)( 13,129)( 14,128)( 15,127)
( 16,136)( 17,140)( 18,139)( 19,138)( 20,137)( 21,146)( 22,150)( 23,149)
( 24,148)( 25,147)( 26,141)( 27,145)( 28,144)( 29,143)( 30,142)( 31,166)
( 32,170)( 33,169)( 34,168)( 35,167)( 36,176)( 37,180)( 38,179)( 39,178)
( 40,177)( 41,171)( 42,175)( 43,174)( 44,173)( 45,172)( 46,151)( 47,155)
( 48,154)( 49,153)( 50,152)( 51,161)( 52,165)( 53,164)( 54,163)( 55,162)
( 56,156)( 57,160)( 58,159)( 59,158)( 60,157)( 61,181)( 62,185)( 63,184)
( 64,183)( 65,182)( 66,191)( 67,195)( 68,194)( 69,193)( 70,192)( 71,186)
( 72,190)( 73,189)( 74,188)( 75,187)( 76,196)( 77,200)( 78,199)( 79,198)
( 80,197)( 81,206)( 82,210)( 83,209)( 84,208)( 85,207)( 86,201)( 87,205)
( 88,204)( 89,203)( 90,202)( 91,226)( 92,230)( 93,229)( 94,228)( 95,227)
( 96,236)( 97,240)( 98,239)( 99,238)(100,237)(101,231)(102,235)(103,234)
(104,233)(105,232)(106,211)(107,215)(108,214)(109,213)(110,212)(111,221)
(112,225)(113,224)(114,223)(115,222)(116,216)(117,220)(118,219)(119,218)
(120,217);
s2 := Sym(240)!(  1,  7)(  2,  6)(  3, 10)(  4,  9)(  5,  8)( 11, 12)( 13, 15)
( 16, 22)( 17, 21)( 18, 25)( 19, 24)( 20, 23)( 26, 27)( 28, 30)( 31, 37)
( 32, 36)( 33, 40)( 34, 39)( 35, 38)( 41, 42)( 43, 45)( 46, 52)( 47, 51)
( 48, 55)( 49, 54)( 50, 53)( 56, 57)( 58, 60)( 61, 67)( 62, 66)( 63, 70)
( 64, 69)( 65, 68)( 71, 72)( 73, 75)( 76, 82)( 77, 81)( 78, 85)( 79, 84)
( 80, 83)( 86, 87)( 88, 90)( 91, 97)( 92, 96)( 93,100)( 94, 99)( 95, 98)
(101,102)(103,105)(106,112)(107,111)(108,115)(109,114)(110,113)(116,117)
(118,120)(121,187)(122,186)(123,190)(124,189)(125,188)(126,182)(127,181)
(128,185)(129,184)(130,183)(131,192)(132,191)(133,195)(134,194)(135,193)
(136,202)(137,201)(138,205)(139,204)(140,203)(141,197)(142,196)(143,200)
(144,199)(145,198)(146,207)(147,206)(148,210)(149,209)(150,208)(151,217)
(152,216)(153,220)(154,219)(155,218)(156,212)(157,211)(158,215)(159,214)
(160,213)(161,222)(162,221)(163,225)(164,224)(165,223)(166,232)(167,231)
(168,235)(169,234)(170,233)(171,227)(172,226)(173,230)(174,229)(175,228)
(176,237)(177,236)(178,240)(179,239)(180,238);
poly := sub<Sym(240)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope