Polytope of Type {2,8,60}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,8,60}*1920a
if this polytope has a name.
Group : SmallGroup(1920,148884)
Rank : 4
Schlafli Type : {2,8,60}
Number of vertices, edges, etc : 2, 8, 240, 60
Order of s0s1s2s3 : 120
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,60}*960a, {2,8,30}*960
   3-fold quotients : {2,8,20}*640a
   4-fold quotients : {2,2,60}*480, {2,4,30}*480a
   5-fold quotients : {2,8,12}*384a
   6-fold quotients : {2,4,20}*320, {2,8,10}*320
   8-fold quotients : {2,2,30}*240
   10-fold quotients : {2,4,12}*192a, {2,8,6}*192
   12-fold quotients : {2,2,20}*160, {2,4,10}*160
   15-fold quotients : {2,8,4}*128a
   16-fold quotients : {2,2,15}*120
   20-fold quotients : {2,2,12}*96, {2,4,6}*96a
   24-fold quotients : {2,2,10}*80
   30-fold quotients : {2,4,4}*64, {2,8,2}*64
   40-fold quotients : {2,2,6}*48
   48-fold quotients : {2,2,5}*40
   60-fold quotients : {2,2,4}*32, {2,4,2}*32
   80-fold quotients : {2,2,3}*24
   120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 33, 48)( 34, 49)( 35, 50)( 36, 51)( 37, 52)( 38, 53)( 39, 54)( 40, 55)
( 41, 56)( 42, 57)( 43, 58)( 44, 59)( 45, 60)( 46, 61)( 47, 62)( 93,108)
( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)( 99,114)(100,115)(101,116)
(102,117)(103,118)(104,119)(105,120)(106,121)(107,122)(123,153)(124,154)
(125,155)(126,156)(127,157)(128,158)(129,159)(130,160)(131,161)(132,162)
(133,163)(134,164)(135,165)(136,166)(137,167)(138,168)(139,169)(140,170)
(141,171)(142,172)(143,173)(144,174)(145,175)(146,176)(147,177)(148,178)
(149,179)(150,180)(151,181)(152,182)(183,213)(184,214)(185,215)(186,216)
(187,217)(188,218)(189,219)(190,220)(191,221)(192,222)(193,223)(194,224)
(195,225)(196,226)(197,227)(198,228)(199,229)(200,230)(201,231)(202,232)
(203,233)(204,234)(205,235)(206,236)(207,237)(208,238)(209,239)(210,240)
(211,241)(212,242);;
s2 := (  3,123)(  4,127)(  5,126)(  6,125)(  7,124)(  8,133)(  9,137)( 10,136)
( 11,135)( 12,134)( 13,128)( 14,132)( 15,131)( 16,130)( 17,129)( 18,138)
( 19,142)( 20,141)( 21,140)( 22,139)( 23,148)( 24,152)( 25,151)( 26,150)
( 27,149)( 28,143)( 29,147)( 30,146)( 31,145)( 32,144)( 33,168)( 34,172)
( 35,171)( 36,170)( 37,169)( 38,178)( 39,182)( 40,181)( 41,180)( 42,179)
( 43,173)( 44,177)( 45,176)( 46,175)( 47,174)( 48,153)( 49,157)( 50,156)
( 51,155)( 52,154)( 53,163)( 54,167)( 55,166)( 56,165)( 57,164)( 58,158)
( 59,162)( 60,161)( 61,160)( 62,159)( 63,183)( 64,187)( 65,186)( 66,185)
( 67,184)( 68,193)( 69,197)( 70,196)( 71,195)( 72,194)( 73,188)( 74,192)
( 75,191)( 76,190)( 77,189)( 78,198)( 79,202)( 80,201)( 81,200)( 82,199)
( 83,208)( 84,212)( 85,211)( 86,210)( 87,209)( 88,203)( 89,207)( 90,206)
( 91,205)( 92,204)( 93,228)( 94,232)( 95,231)( 96,230)( 97,229)( 98,238)
( 99,242)(100,241)(101,240)(102,239)(103,233)(104,237)(105,236)(106,235)
(107,234)(108,213)(109,217)(110,216)(111,215)(112,214)(113,223)(114,227)
(115,226)(116,225)(117,224)(118,218)(119,222)(120,221)(121,220)(122,219);;
s3 := (  3,  9)(  4,  8)(  5, 12)(  6, 11)(  7, 10)( 13, 14)( 15, 17)( 18, 24)
( 19, 23)( 20, 27)( 21, 26)( 22, 25)( 28, 29)( 30, 32)( 33, 39)( 34, 38)
( 35, 42)( 36, 41)( 37, 40)( 43, 44)( 45, 47)( 48, 54)( 49, 53)( 50, 57)
( 51, 56)( 52, 55)( 58, 59)( 60, 62)( 63, 69)( 64, 68)( 65, 72)( 66, 71)
( 67, 70)( 73, 74)( 75, 77)( 78, 84)( 79, 83)( 80, 87)( 81, 86)( 82, 85)
( 88, 89)( 90, 92)( 93, 99)( 94, 98)( 95,102)( 96,101)( 97,100)(103,104)
(105,107)(108,114)(109,113)(110,117)(111,116)(112,115)(118,119)(120,122)
(123,189)(124,188)(125,192)(126,191)(127,190)(128,184)(129,183)(130,187)
(131,186)(132,185)(133,194)(134,193)(135,197)(136,196)(137,195)(138,204)
(139,203)(140,207)(141,206)(142,205)(143,199)(144,198)(145,202)(146,201)
(147,200)(148,209)(149,208)(150,212)(151,211)(152,210)(153,219)(154,218)
(155,222)(156,221)(157,220)(158,214)(159,213)(160,217)(161,216)(162,215)
(163,224)(164,223)(165,227)(166,226)(167,225)(168,234)(169,233)(170,237)
(171,236)(172,235)(173,229)(174,228)(175,232)(176,231)(177,230)(178,239)
(179,238)(180,242)(181,241)(182,240);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(242)!(1,2);
s1 := Sym(242)!( 33, 48)( 34, 49)( 35, 50)( 36, 51)( 37, 52)( 38, 53)( 39, 54)
( 40, 55)( 41, 56)( 42, 57)( 43, 58)( 44, 59)( 45, 60)( 46, 61)( 47, 62)
( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)( 99,114)(100,115)
(101,116)(102,117)(103,118)(104,119)(105,120)(106,121)(107,122)(123,153)
(124,154)(125,155)(126,156)(127,157)(128,158)(129,159)(130,160)(131,161)
(132,162)(133,163)(134,164)(135,165)(136,166)(137,167)(138,168)(139,169)
(140,170)(141,171)(142,172)(143,173)(144,174)(145,175)(146,176)(147,177)
(148,178)(149,179)(150,180)(151,181)(152,182)(183,213)(184,214)(185,215)
(186,216)(187,217)(188,218)(189,219)(190,220)(191,221)(192,222)(193,223)
(194,224)(195,225)(196,226)(197,227)(198,228)(199,229)(200,230)(201,231)
(202,232)(203,233)(204,234)(205,235)(206,236)(207,237)(208,238)(209,239)
(210,240)(211,241)(212,242);
s2 := Sym(242)!(  3,123)(  4,127)(  5,126)(  6,125)(  7,124)(  8,133)(  9,137)
( 10,136)( 11,135)( 12,134)( 13,128)( 14,132)( 15,131)( 16,130)( 17,129)
( 18,138)( 19,142)( 20,141)( 21,140)( 22,139)( 23,148)( 24,152)( 25,151)
( 26,150)( 27,149)( 28,143)( 29,147)( 30,146)( 31,145)( 32,144)( 33,168)
( 34,172)( 35,171)( 36,170)( 37,169)( 38,178)( 39,182)( 40,181)( 41,180)
( 42,179)( 43,173)( 44,177)( 45,176)( 46,175)( 47,174)( 48,153)( 49,157)
( 50,156)( 51,155)( 52,154)( 53,163)( 54,167)( 55,166)( 56,165)( 57,164)
( 58,158)( 59,162)( 60,161)( 61,160)( 62,159)( 63,183)( 64,187)( 65,186)
( 66,185)( 67,184)( 68,193)( 69,197)( 70,196)( 71,195)( 72,194)( 73,188)
( 74,192)( 75,191)( 76,190)( 77,189)( 78,198)( 79,202)( 80,201)( 81,200)
( 82,199)( 83,208)( 84,212)( 85,211)( 86,210)( 87,209)( 88,203)( 89,207)
( 90,206)( 91,205)( 92,204)( 93,228)( 94,232)( 95,231)( 96,230)( 97,229)
( 98,238)( 99,242)(100,241)(101,240)(102,239)(103,233)(104,237)(105,236)
(106,235)(107,234)(108,213)(109,217)(110,216)(111,215)(112,214)(113,223)
(114,227)(115,226)(116,225)(117,224)(118,218)(119,222)(120,221)(121,220)
(122,219);
s3 := Sym(242)!(  3,  9)(  4,  8)(  5, 12)(  6, 11)(  7, 10)( 13, 14)( 15, 17)
( 18, 24)( 19, 23)( 20, 27)( 21, 26)( 22, 25)( 28, 29)( 30, 32)( 33, 39)
( 34, 38)( 35, 42)( 36, 41)( 37, 40)( 43, 44)( 45, 47)( 48, 54)( 49, 53)
( 50, 57)( 51, 56)( 52, 55)( 58, 59)( 60, 62)( 63, 69)( 64, 68)( 65, 72)
( 66, 71)( 67, 70)( 73, 74)( 75, 77)( 78, 84)( 79, 83)( 80, 87)( 81, 86)
( 82, 85)( 88, 89)( 90, 92)( 93, 99)( 94, 98)( 95,102)( 96,101)( 97,100)
(103,104)(105,107)(108,114)(109,113)(110,117)(111,116)(112,115)(118,119)
(120,122)(123,189)(124,188)(125,192)(126,191)(127,190)(128,184)(129,183)
(130,187)(131,186)(132,185)(133,194)(134,193)(135,197)(136,196)(137,195)
(138,204)(139,203)(140,207)(141,206)(142,205)(143,199)(144,198)(145,202)
(146,201)(147,200)(148,209)(149,208)(150,212)(151,211)(152,210)(153,219)
(154,218)(155,222)(156,221)(157,220)(158,214)(159,213)(160,217)(161,216)
(162,215)(163,224)(164,223)(165,227)(166,226)(167,225)(168,234)(169,233)
(170,237)(171,236)(172,235)(173,229)(174,228)(175,232)(176,231)(177,230)
(178,239)(179,238)(180,242)(181,241)(182,240);
poly := sub<Sym(242)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope