include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {24,2,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,2,10}*960
if this polytope has a name.
Group : SmallGroup(960,8150)
Rank : 4
Schlafli Type : {24,2,10}
Number of vertices, edges, etc : 24, 24, 10, 10
Order of s0s1s2s3 : 120
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{24,2,10,2} of size 1920
Vertex Figure Of :
{2,24,2,10} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {24,2,5}*480, {12,2,10}*480
3-fold quotients : {8,2,10}*320
4-fold quotients : {12,2,5}*240, {6,2,10}*240
5-fold quotients : {24,2,2}*192
6-fold quotients : {8,2,5}*160, {4,2,10}*160
8-fold quotients : {3,2,10}*120, {6,2,5}*120
10-fold quotients : {12,2,2}*96
12-fold quotients : {4,2,5}*80, {2,2,10}*80
15-fold quotients : {8,2,2}*64
16-fold quotients : {3,2,5}*60
20-fold quotients : {6,2,2}*48
24-fold quotients : {2,2,5}*40
30-fold quotients : {4,2,2}*32
40-fold quotients : {3,2,2}*24
60-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {24,4,10}*1920a, {24,2,20}*1920, {48,2,10}*1920
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 9)( 7,11)( 8,10)(12,15)(13,17)(14,16)(19,22)(20,21)
(23,24);;
s1 := ( 1, 7)( 2, 4)( 3,13)( 5, 8)( 6,10)( 9,19)(11,14)(12,16)(15,23)(17,20)
(18,21)(22,24);;
s2 := (27,28)(29,30)(31,32)(33,34);;
s3 := (25,29)(26,27)(28,33)(30,31)(32,34);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(34)!( 2, 3)( 4, 5)( 6, 9)( 7,11)( 8,10)(12,15)(13,17)(14,16)(19,22)
(20,21)(23,24);
s1 := Sym(34)!( 1, 7)( 2, 4)( 3,13)( 5, 8)( 6,10)( 9,19)(11,14)(12,16)(15,23)
(17,20)(18,21)(22,24);
s2 := Sym(34)!(27,28)(29,30)(31,32)(33,34);
s3 := Sym(34)!(25,29)(26,27)(28,33)(30,31)(32,34);
poly := sub<Sym(34)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope