include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {24,2,20}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,2,20}*1920
if this polytope has a name.
Group : SmallGroup(1920,182163)
Rank : 4
Schlafli Type : {24,2,20}
Number of vertices, edges, etc : 24, 24, 20, 20
Order of s0s1s2s3 : 120
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {12,2,20}*960, {24,2,10}*960
3-fold quotients : {8,2,20}*640
4-fold quotients : {24,2,5}*480, {12,2,10}*480, {6,2,20}*480
5-fold quotients : {24,2,4}*384
6-fold quotients : {4,2,20}*320, {8,2,10}*320
8-fold quotients : {12,2,5}*240, {3,2,20}*240, {6,2,10}*240
10-fold quotients : {12,2,4}*192, {24,2,2}*192
12-fold quotients : {8,2,5}*160, {2,2,20}*160, {4,2,10}*160
15-fold quotients : {8,2,4}*128
16-fold quotients : {3,2,10}*120, {6,2,5}*120
20-fold quotients : {12,2,2}*96, {6,2,4}*96
24-fold quotients : {4,2,5}*80, {2,2,10}*80
30-fold quotients : {4,2,4}*64, {8,2,2}*64
32-fold quotients : {3,2,5}*60
40-fold quotients : {3,2,4}*48, {6,2,2}*48
48-fold quotients : {2,2,5}*40
60-fold quotients : {2,2,4}*32, {4,2,2}*32
80-fold quotients : {3,2,2}*24
120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 9)( 7,11)( 8,10)(12,15)(13,17)(14,16)(19,22)(20,21)
(23,24);;
s1 := ( 1, 7)( 2, 4)( 3,13)( 5, 8)( 6,10)( 9,19)(11,14)(12,16)(15,23)(17,20)
(18,21)(22,24);;
s2 := (26,27)(28,29)(31,34)(32,33)(35,36)(37,38)(39,42)(40,41)(43,44);;
s3 := (25,31)(26,28)(27,37)(29,39)(30,33)(32,35)(34,43)(36,40)(38,41)(42,44);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(44)!( 2, 3)( 4, 5)( 6, 9)( 7,11)( 8,10)(12,15)(13,17)(14,16)(19,22)
(20,21)(23,24);
s1 := Sym(44)!( 1, 7)( 2, 4)( 3,13)( 5, 8)( 6,10)( 9,19)(11,14)(12,16)(15,23)
(17,20)(18,21)(22,24);
s2 := Sym(44)!(26,27)(28,29)(31,34)(32,33)(35,36)(37,38)(39,42)(40,41)(43,44);
s3 := Sym(44)!(25,31)(26,28)(27,37)(29,39)(30,33)(32,35)(34,43)(36,40)(38,41)
(42,44);
poly := sub<Sym(44)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope