include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {9,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,6}*972a
if this polytope has a name.
Group : SmallGroup(972,101)
Rank : 3
Schlafli Type : {9,6}
Number of vertices, edges, etc : 81, 243, 54
Order of s0s1s2 : 6
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{9,6,2} of size 1944
Vertex Figure Of :
{2,9,6} of size 1944
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {9,6}*324b, {9,6}*324c
9-fold quotients : {3,6}*108
27-fold quotients : {3,6}*36
81-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
2-fold covers : {18,6}*1944a
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,18)(11,17)(12,16)(13,15)(19,23)(20,22)
(21,24)(25,26)(28,55)(29,57)(30,56)(31,61)(32,63)(33,62)(34,58)(35,60)(36,59)
(37,72)(38,71)(39,70)(40,69)(41,68)(42,67)(43,66)(44,65)(45,64)(46,77)(47,76)
(48,78)(49,74)(50,73)(51,75)(52,80)(53,79)(54,81);;
s1 := ( 1,37)( 2,39)( 3,38)( 4,43)( 5,45)( 6,44)( 7,40)( 8,42)( 9,41)(10,47)
(11,46)(12,48)(13,53)(14,52)(15,54)(16,50)(17,49)(18,51)(19,30)(20,29)(21,28)
(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(55,62)(56,61)(57,63)(58,59)(64,72)
(65,71)(66,70)(67,69)(73,79)(74,81)(75,80)(77,78);;
s2 := ( 2, 3)( 5, 6)( 8, 9)(10,22)(11,24)(12,23)(13,25)(14,27)(15,26)(16,19)
(17,21)(18,20)(28,55)(29,57)(30,56)(31,58)(32,60)(33,59)(34,61)(35,63)(36,62)
(37,76)(38,78)(39,77)(40,79)(41,81)(42,80)(43,73)(44,75)(45,74)(46,70)(47,72)
(48,71)(49,64)(50,66)(51,65)(52,67)(53,69)(54,68);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,18)(11,17)(12,16)(13,15)(19,23)
(20,22)(21,24)(25,26)(28,55)(29,57)(30,56)(31,61)(32,63)(33,62)(34,58)(35,60)
(36,59)(37,72)(38,71)(39,70)(40,69)(41,68)(42,67)(43,66)(44,65)(45,64)(46,77)
(47,76)(48,78)(49,74)(50,73)(51,75)(52,80)(53,79)(54,81);
s1 := Sym(81)!( 1,37)( 2,39)( 3,38)( 4,43)( 5,45)( 6,44)( 7,40)( 8,42)( 9,41)
(10,47)(11,46)(12,48)(13,53)(14,52)(15,54)(16,50)(17,49)(18,51)(19,30)(20,29)
(21,28)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(55,62)(56,61)(57,63)(58,59)
(64,72)(65,71)(66,70)(67,69)(73,79)(74,81)(75,80)(77,78);
s2 := Sym(81)!( 2, 3)( 5, 6)( 8, 9)(10,22)(11,24)(12,23)(13,25)(14,27)(15,26)
(16,19)(17,21)(18,20)(28,55)(29,57)(30,56)(31,58)(32,60)(33,59)(34,61)(35,63)
(36,62)(37,76)(38,78)(39,77)(40,79)(41,81)(42,80)(43,73)(44,75)(45,74)(46,70)
(47,72)(48,71)(49,64)(50,66)(51,65)(52,67)(53,69)(54,68);
poly := sub<Sym(81)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope