include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {18,9}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,9}*972b
if this polytope has a name.
Group : SmallGroup(972,102)
Rank : 3
Schlafli Type : {18,9}
Number of vertices, edges, etc : 54, 243, 27
Order of s0s1s2 : 6
Order of s0s1s2s1 : 18
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{18,9,2} of size 1944
Vertex Figure Of :
{2,18,9} of size 1944
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,9}*324c
9-fold quotients : {6,3}*108
27-fold quotients : {6,3}*36
81-fold quotients : {2,3}*12
Covers (Minimal Covers in Boldface) :
2-fold covers : {18,18}*1944e
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(10,22)(11,24)(12,23)(13,25)(14,27)(15,26)(16,19)
(17,21)(18,20)(28,57)(29,56)(30,55)(31,60)(32,59)(33,58)(34,63)(35,62)(36,61)
(37,78)(38,77)(39,76)(40,81)(41,80)(42,79)(43,75)(44,74)(45,73)(46,72)(47,71)
(48,70)(49,66)(50,65)(51,64)(52,69)(53,68)(54,67);;
s1 := ( 1,28)( 2,30)( 3,29)( 4,34)( 5,36)( 6,35)( 7,31)( 8,33)( 9,32)(10,39)
(11,38)(12,37)(13,45)(14,44)(15,43)(16,42)(17,41)(18,40)(19,47)(20,46)(21,48)
(22,53)(23,52)(24,54)(25,50)(26,49)(27,51)(55,57)(58,63)(59,62)(60,61)(64,65)
(67,71)(68,70)(69,72)(74,75)(76,79)(77,81)(78,80);;
s2 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,16)(11,18)(12,17)(14,15)(19,22)(20,24)
(21,23)(26,27)(28,78)(29,77)(30,76)(31,75)(32,74)(33,73)(34,81)(35,80)(36,79)
(37,57)(38,56)(39,55)(40,63)(41,62)(42,61)(43,60)(44,59)(45,58)(46,72)(47,71)
(48,70)(49,69)(50,68)(51,67)(52,66)(53,65)(54,64);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 5, 6)( 8, 9)(10,22)(11,24)(12,23)(13,25)(14,27)(15,26)
(16,19)(17,21)(18,20)(28,57)(29,56)(30,55)(31,60)(32,59)(33,58)(34,63)(35,62)
(36,61)(37,78)(38,77)(39,76)(40,81)(41,80)(42,79)(43,75)(44,74)(45,73)(46,72)
(47,71)(48,70)(49,66)(50,65)(51,64)(52,69)(53,68)(54,67);
s1 := Sym(81)!( 1,28)( 2,30)( 3,29)( 4,34)( 5,36)( 6,35)( 7,31)( 8,33)( 9,32)
(10,39)(11,38)(12,37)(13,45)(14,44)(15,43)(16,42)(17,41)(18,40)(19,47)(20,46)
(21,48)(22,53)(23,52)(24,54)(25,50)(26,49)(27,51)(55,57)(58,63)(59,62)(60,61)
(64,65)(67,71)(68,70)(69,72)(74,75)(76,79)(77,81)(78,80);
s2 := Sym(81)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,16)(11,18)(12,17)(14,15)(19,22)
(20,24)(21,23)(26,27)(28,78)(29,77)(30,76)(31,75)(32,74)(33,73)(34,81)(35,80)
(36,79)(37,57)(38,56)(39,55)(40,63)(41,62)(42,61)(43,60)(44,59)(45,58)(46,72)
(47,71)(48,70)(49,69)(50,68)(51,67)(52,66)(53,65)(54,64);
poly := sub<Sym(81)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s2 >;
References : None.
to this polytope