include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {18,9}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,9}*972j
if this polytope has a name.
Group : SmallGroup(972,111)
Rank : 3
Schlafli Type : {18,9}
Number of vertices, edges, etc : 54, 243, 27
Order of s0s1s2 : 6
Order of s0s1s2s1 : 18
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{18,9,2} of size 1944
Vertex Figure Of :
{2,18,9} of size 1944
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,9}*324b, {18,3}*324
9-fold quotients : {6,3}*108
27-fold quotients : {6,3}*36
81-fold quotients : {2,3}*12
Covers (Minimal Covers in Boldface) :
2-fold covers : {18,18}*1944ac
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 10, 19)( 11, 21)( 12, 20)( 13, 25)
( 14, 27)( 15, 26)( 16, 22)( 17, 24)( 18, 23)( 29, 30)( 31, 34)( 32, 36)
( 33, 35)( 37, 46)( 38, 48)( 39, 47)( 40, 52)( 41, 54)( 42, 53)( 43, 49)
( 44, 51)( 45, 50)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 64, 73)( 65, 75)
( 66, 74)( 67, 79)( 68, 81)( 69, 80)( 70, 76)( 71, 78)( 72, 77)( 82,181)
( 83,183)( 84,182)( 85,187)( 86,189)( 87,188)( 88,184)( 89,186)( 90,185)
( 91,172)( 92,174)( 93,173)( 94,178)( 95,180)( 96,179)( 97,175)( 98,177)
( 99,176)(100,163)(101,165)(102,164)(103,169)(104,171)(105,170)(106,166)
(107,168)(108,167)(109,208)(110,210)(111,209)(112,214)(113,216)(114,215)
(115,211)(116,213)(117,212)(118,199)(119,201)(120,200)(121,205)(122,207)
(123,206)(124,202)(125,204)(126,203)(127,190)(128,192)(129,191)(130,196)
(131,198)(132,197)(133,193)(134,195)(135,194)(136,235)(137,237)(138,236)
(139,241)(140,243)(141,242)(142,238)(143,240)(144,239)(145,226)(146,228)
(147,227)(148,232)(149,234)(150,233)(151,229)(152,231)(153,230)(154,217)
(155,219)(156,218)(157,223)(158,225)(159,224)(160,220)(161,222)(162,221);;
s1 := ( 1, 82)( 2, 84)( 3, 83)( 4, 87)( 5, 86)( 6, 85)( 7, 89)( 8, 88)
( 9, 90)( 10,100)( 11,102)( 12,101)( 13,105)( 14,104)( 15,103)( 16,107)
( 17,106)( 18,108)( 19, 91)( 20, 93)( 21, 92)( 22, 96)( 23, 95)( 24, 94)
( 25, 98)( 26, 97)( 27, 99)( 28,143)( 29,142)( 30,144)( 31,136)( 32,138)
( 33,137)( 34,141)( 35,140)( 36,139)( 37,161)( 38,160)( 39,162)( 40,154)
( 41,156)( 42,155)( 43,159)( 44,158)( 45,157)( 46,152)( 47,151)( 48,153)
( 49,145)( 50,147)( 51,146)( 52,150)( 53,149)( 54,148)( 55,112)( 56,114)
( 57,113)( 58,117)( 59,116)( 60,115)( 61,110)( 62,109)( 63,111)( 64,130)
( 65,132)( 66,131)( 67,135)( 68,134)( 69,133)( 70,128)( 71,127)( 72,129)
( 73,121)( 74,123)( 75,122)( 76,126)( 77,125)( 78,124)( 79,119)( 80,118)
( 81,120)(163,181)(164,183)(165,182)(166,186)(167,185)(168,184)(169,188)
(170,187)(171,189)(173,174)(175,177)(178,179)(190,242)(191,241)(192,243)
(193,235)(194,237)(195,236)(196,240)(197,239)(198,238)(199,233)(200,232)
(201,234)(202,226)(203,228)(204,227)(205,231)(206,230)(207,229)(208,224)
(209,223)(210,225)(211,217)(212,219)(213,218)(214,222)(215,221)(216,220);;
s2 := ( 1, 28)( 2, 30)( 3, 29)( 4, 31)( 5, 33)( 6, 32)( 7, 34)( 8, 36)
( 9, 35)( 10, 46)( 11, 48)( 12, 47)( 13, 49)( 14, 51)( 15, 50)( 16, 52)
( 17, 54)( 18, 53)( 19, 37)( 20, 39)( 21, 38)( 22, 40)( 23, 42)( 24, 41)
( 25, 43)( 26, 45)( 27, 44)( 56, 57)( 59, 60)( 62, 63)( 64, 73)( 65, 75)
( 66, 74)( 67, 76)( 68, 78)( 69, 77)( 70, 79)( 71, 81)( 72, 80)( 82,208)
( 83,210)( 84,209)( 85,211)( 86,213)( 87,212)( 88,214)( 89,216)( 90,215)
( 91,199)( 92,201)( 93,200)( 94,202)( 95,204)( 96,203)( 97,205)( 98,207)
( 99,206)(100,190)(101,192)(102,191)(103,193)(104,195)(105,194)(106,196)
(107,198)(108,197)(109,181)(110,183)(111,182)(112,184)(113,186)(114,185)
(115,187)(116,189)(117,188)(118,172)(119,174)(120,173)(121,175)(122,177)
(123,176)(124,178)(125,180)(126,179)(127,163)(128,165)(129,164)(130,166)
(131,168)(132,167)(133,169)(134,171)(135,170)(136,235)(137,237)(138,236)
(139,238)(140,240)(141,239)(142,241)(143,243)(144,242)(145,226)(146,228)
(147,227)(148,229)(149,231)(150,230)(151,232)(152,234)(153,233)(154,217)
(155,219)(156,218)(157,220)(158,222)(159,221)(160,223)(161,225)(162,224);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(243)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 10, 19)( 11, 21)( 12, 20)
( 13, 25)( 14, 27)( 15, 26)( 16, 22)( 17, 24)( 18, 23)( 29, 30)( 31, 34)
( 32, 36)( 33, 35)( 37, 46)( 38, 48)( 39, 47)( 40, 52)( 41, 54)( 42, 53)
( 43, 49)( 44, 51)( 45, 50)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 64, 73)
( 65, 75)( 66, 74)( 67, 79)( 68, 81)( 69, 80)( 70, 76)( 71, 78)( 72, 77)
( 82,181)( 83,183)( 84,182)( 85,187)( 86,189)( 87,188)( 88,184)( 89,186)
( 90,185)( 91,172)( 92,174)( 93,173)( 94,178)( 95,180)( 96,179)( 97,175)
( 98,177)( 99,176)(100,163)(101,165)(102,164)(103,169)(104,171)(105,170)
(106,166)(107,168)(108,167)(109,208)(110,210)(111,209)(112,214)(113,216)
(114,215)(115,211)(116,213)(117,212)(118,199)(119,201)(120,200)(121,205)
(122,207)(123,206)(124,202)(125,204)(126,203)(127,190)(128,192)(129,191)
(130,196)(131,198)(132,197)(133,193)(134,195)(135,194)(136,235)(137,237)
(138,236)(139,241)(140,243)(141,242)(142,238)(143,240)(144,239)(145,226)
(146,228)(147,227)(148,232)(149,234)(150,233)(151,229)(152,231)(153,230)
(154,217)(155,219)(156,218)(157,223)(158,225)(159,224)(160,220)(161,222)
(162,221);
s1 := Sym(243)!( 1, 82)( 2, 84)( 3, 83)( 4, 87)( 5, 86)( 6, 85)( 7, 89)
( 8, 88)( 9, 90)( 10,100)( 11,102)( 12,101)( 13,105)( 14,104)( 15,103)
( 16,107)( 17,106)( 18,108)( 19, 91)( 20, 93)( 21, 92)( 22, 96)( 23, 95)
( 24, 94)( 25, 98)( 26, 97)( 27, 99)( 28,143)( 29,142)( 30,144)( 31,136)
( 32,138)( 33,137)( 34,141)( 35,140)( 36,139)( 37,161)( 38,160)( 39,162)
( 40,154)( 41,156)( 42,155)( 43,159)( 44,158)( 45,157)( 46,152)( 47,151)
( 48,153)( 49,145)( 50,147)( 51,146)( 52,150)( 53,149)( 54,148)( 55,112)
( 56,114)( 57,113)( 58,117)( 59,116)( 60,115)( 61,110)( 62,109)( 63,111)
( 64,130)( 65,132)( 66,131)( 67,135)( 68,134)( 69,133)( 70,128)( 71,127)
( 72,129)( 73,121)( 74,123)( 75,122)( 76,126)( 77,125)( 78,124)( 79,119)
( 80,118)( 81,120)(163,181)(164,183)(165,182)(166,186)(167,185)(168,184)
(169,188)(170,187)(171,189)(173,174)(175,177)(178,179)(190,242)(191,241)
(192,243)(193,235)(194,237)(195,236)(196,240)(197,239)(198,238)(199,233)
(200,232)(201,234)(202,226)(203,228)(204,227)(205,231)(206,230)(207,229)
(208,224)(209,223)(210,225)(211,217)(212,219)(213,218)(214,222)(215,221)
(216,220);
s2 := Sym(243)!( 1, 28)( 2, 30)( 3, 29)( 4, 31)( 5, 33)( 6, 32)( 7, 34)
( 8, 36)( 9, 35)( 10, 46)( 11, 48)( 12, 47)( 13, 49)( 14, 51)( 15, 50)
( 16, 52)( 17, 54)( 18, 53)( 19, 37)( 20, 39)( 21, 38)( 22, 40)( 23, 42)
( 24, 41)( 25, 43)( 26, 45)( 27, 44)( 56, 57)( 59, 60)( 62, 63)( 64, 73)
( 65, 75)( 66, 74)( 67, 76)( 68, 78)( 69, 77)( 70, 79)( 71, 81)( 72, 80)
( 82,208)( 83,210)( 84,209)( 85,211)( 86,213)( 87,212)( 88,214)( 89,216)
( 90,215)( 91,199)( 92,201)( 93,200)( 94,202)( 95,204)( 96,203)( 97,205)
( 98,207)( 99,206)(100,190)(101,192)(102,191)(103,193)(104,195)(105,194)
(106,196)(107,198)(108,197)(109,181)(110,183)(111,182)(112,184)(113,186)
(114,185)(115,187)(116,189)(117,188)(118,172)(119,174)(120,173)(121,175)
(122,177)(123,176)(124,178)(125,180)(126,179)(127,163)(128,165)(129,164)
(130,166)(131,168)(132,167)(133,169)(134,171)(135,170)(136,235)(137,237)
(138,236)(139,238)(140,240)(141,239)(142,241)(143,243)(144,242)(145,226)
(146,228)(147,227)(148,229)(149,231)(150,230)(151,232)(152,234)(153,233)
(154,217)(155,219)(156,218)(157,220)(158,222)(159,221)(160,223)(161,225)
(162,224);
poly := sub<Sym(243)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope