Polytope of Type {490}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {490}*980
Also Known As : 490-gon, {490}. if this polytope has another name.
Group : SmallGroup(980,10)
Rank : 2
Schlafli Type : {490}
Number of vertices, edges, etc : 490, 490
Order of s0s1 : 490
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {490,2} of size 1960
Vertex Figure Of :
   {2,490} of size 1960
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {245}*490
   5-fold quotients : {98}*196
   7-fold quotients : {70}*140
   10-fold quotients : {49}*98
   14-fold quotients : {35}*70
   35-fold quotients : {14}*28
   49-fold quotients : {10}*20
   70-fold quotients : {7}*14
   98-fold quotients : {5}*10
   245-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {980}*1960
Permutation Representation (GAP) :
s0 := (  2,  7)(  3,  6)(  4,  5)(  8, 49)(  9, 48)( 10, 47)( 11, 46)( 12, 45)
( 13, 44)( 14, 43)( 15, 42)( 16, 41)( 17, 40)( 18, 39)( 19, 38)( 20, 37)
( 21, 36)( 22, 35)( 23, 34)( 24, 33)( 25, 32)( 26, 31)( 27, 30)( 28, 29)
( 50,197)( 51,203)( 52,202)( 53,201)( 54,200)( 55,199)( 56,198)( 57,245)
( 58,244)( 59,243)( 60,242)( 61,241)( 62,240)( 63,239)( 64,238)( 65,237)
( 66,236)( 67,235)( 68,234)( 69,233)( 70,232)( 71,231)( 72,230)( 73,229)
( 74,228)( 75,227)( 76,226)( 77,225)( 78,224)( 79,223)( 80,222)( 81,221)
( 82,220)( 83,219)( 84,218)( 85,217)( 86,216)( 87,215)( 88,214)( 89,213)
( 90,212)( 91,211)( 92,210)( 93,209)( 94,208)( 95,207)( 96,206)( 97,205)
( 98,204)( 99,148)(100,154)(101,153)(102,152)(103,151)(104,150)(105,149)
(106,196)(107,195)(108,194)(109,193)(110,192)(111,191)(112,190)(113,189)
(114,188)(115,187)(116,186)(117,185)(118,184)(119,183)(120,182)(121,181)
(122,180)(123,179)(124,178)(125,177)(126,176)(127,175)(128,174)(129,173)
(130,172)(131,171)(132,170)(133,169)(134,168)(135,167)(136,166)(137,165)
(138,164)(139,163)(140,162)(141,161)(142,160)(143,159)(144,158)(145,157)
(146,156)(147,155)(247,252)(248,251)(249,250)(253,294)(254,293)(255,292)
(256,291)(257,290)(258,289)(259,288)(260,287)(261,286)(262,285)(263,284)
(264,283)(265,282)(266,281)(267,280)(268,279)(269,278)(270,277)(271,276)
(272,275)(273,274)(295,442)(296,448)(297,447)(298,446)(299,445)(300,444)
(301,443)(302,490)(303,489)(304,488)(305,487)(306,486)(307,485)(308,484)
(309,483)(310,482)(311,481)(312,480)(313,479)(314,478)(315,477)(316,476)
(317,475)(318,474)(319,473)(320,472)(321,471)(322,470)(323,469)(324,468)
(325,467)(326,466)(327,465)(328,464)(329,463)(330,462)(331,461)(332,460)
(333,459)(334,458)(335,457)(336,456)(337,455)(338,454)(339,453)(340,452)
(341,451)(342,450)(343,449)(344,393)(345,399)(346,398)(347,397)(348,396)
(349,395)(350,394)(351,441)(352,440)(353,439)(354,438)(355,437)(356,436)
(357,435)(358,434)(359,433)(360,432)(361,431)(362,430)(363,429)(364,428)
(365,427)(366,426)(367,425)(368,424)(369,423)(370,422)(371,421)(372,420)
(373,419)(374,418)(375,417)(376,416)(377,415)(378,414)(379,413)(380,412)
(381,411)(382,410)(383,409)(384,408)(385,407)(386,406)(387,405)(388,404)
(389,403)(390,402)(391,401)(392,400);;
s1 := (  1,302)(  2,308)(  3,307)(  4,306)(  5,305)(  6,304)(  7,303)(  8,295)
(  9,301)( 10,300)( 11,299)( 12,298)( 13,297)( 14,296)( 15,343)( 16,342)
( 17,341)( 18,340)( 19,339)( 20,338)( 21,337)( 22,336)( 23,335)( 24,334)
( 25,333)( 26,332)( 27,331)( 28,330)( 29,329)( 30,328)( 31,327)( 32,326)
( 33,325)( 34,324)( 35,323)( 36,322)( 37,321)( 38,320)( 39,319)( 40,318)
( 41,317)( 42,316)( 43,315)( 44,314)( 45,313)( 46,312)( 47,311)( 48,310)
( 49,309)( 50,253)( 51,259)( 52,258)( 53,257)( 54,256)( 55,255)( 56,254)
( 57,246)( 58,252)( 59,251)( 60,250)( 61,249)( 62,248)( 63,247)( 64,294)
( 65,293)( 66,292)( 67,291)( 68,290)( 69,289)( 70,288)( 71,287)( 72,286)
( 73,285)( 74,284)( 75,283)( 76,282)( 77,281)( 78,280)( 79,279)( 80,278)
( 81,277)( 82,276)( 83,275)( 84,274)( 85,273)( 86,272)( 87,271)( 88,270)
( 89,269)( 90,268)( 91,267)( 92,266)( 93,265)( 94,264)( 95,263)( 96,262)
( 97,261)( 98,260)( 99,449)(100,455)(101,454)(102,453)(103,452)(104,451)
(105,450)(106,442)(107,448)(108,447)(109,446)(110,445)(111,444)(112,443)
(113,490)(114,489)(115,488)(116,487)(117,486)(118,485)(119,484)(120,483)
(121,482)(122,481)(123,480)(124,479)(125,478)(126,477)(127,476)(128,475)
(129,474)(130,473)(131,472)(132,471)(133,470)(134,469)(135,468)(136,467)
(137,466)(138,465)(139,464)(140,463)(141,462)(142,461)(143,460)(144,459)
(145,458)(146,457)(147,456)(148,400)(149,406)(150,405)(151,404)(152,403)
(153,402)(154,401)(155,393)(156,399)(157,398)(158,397)(159,396)(160,395)
(161,394)(162,441)(163,440)(164,439)(165,438)(166,437)(167,436)(168,435)
(169,434)(170,433)(171,432)(172,431)(173,430)(174,429)(175,428)(176,427)
(177,426)(178,425)(179,424)(180,423)(181,422)(182,421)(183,420)(184,419)
(185,418)(186,417)(187,416)(188,415)(189,414)(190,413)(191,412)(192,411)
(193,410)(194,409)(195,408)(196,407)(197,351)(198,357)(199,356)(200,355)
(201,354)(202,353)(203,352)(204,344)(205,350)(206,349)(207,348)(208,347)
(209,346)(210,345)(211,392)(212,391)(213,390)(214,389)(215,388)(216,387)
(217,386)(218,385)(219,384)(220,383)(221,382)(222,381)(223,380)(224,379)
(225,378)(226,377)(227,376)(228,375)(229,374)(230,373)(231,372)(232,371)
(233,370)(234,369)(235,368)(236,367)(237,366)(238,365)(239,364)(240,363)
(241,362)(242,361)(243,360)(244,359)(245,358);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(490)!(  2,  7)(  3,  6)(  4,  5)(  8, 49)(  9, 48)( 10, 47)( 11, 46)
( 12, 45)( 13, 44)( 14, 43)( 15, 42)( 16, 41)( 17, 40)( 18, 39)( 19, 38)
( 20, 37)( 21, 36)( 22, 35)( 23, 34)( 24, 33)( 25, 32)( 26, 31)( 27, 30)
( 28, 29)( 50,197)( 51,203)( 52,202)( 53,201)( 54,200)( 55,199)( 56,198)
( 57,245)( 58,244)( 59,243)( 60,242)( 61,241)( 62,240)( 63,239)( 64,238)
( 65,237)( 66,236)( 67,235)( 68,234)( 69,233)( 70,232)( 71,231)( 72,230)
( 73,229)( 74,228)( 75,227)( 76,226)( 77,225)( 78,224)( 79,223)( 80,222)
( 81,221)( 82,220)( 83,219)( 84,218)( 85,217)( 86,216)( 87,215)( 88,214)
( 89,213)( 90,212)( 91,211)( 92,210)( 93,209)( 94,208)( 95,207)( 96,206)
( 97,205)( 98,204)( 99,148)(100,154)(101,153)(102,152)(103,151)(104,150)
(105,149)(106,196)(107,195)(108,194)(109,193)(110,192)(111,191)(112,190)
(113,189)(114,188)(115,187)(116,186)(117,185)(118,184)(119,183)(120,182)
(121,181)(122,180)(123,179)(124,178)(125,177)(126,176)(127,175)(128,174)
(129,173)(130,172)(131,171)(132,170)(133,169)(134,168)(135,167)(136,166)
(137,165)(138,164)(139,163)(140,162)(141,161)(142,160)(143,159)(144,158)
(145,157)(146,156)(147,155)(247,252)(248,251)(249,250)(253,294)(254,293)
(255,292)(256,291)(257,290)(258,289)(259,288)(260,287)(261,286)(262,285)
(263,284)(264,283)(265,282)(266,281)(267,280)(268,279)(269,278)(270,277)
(271,276)(272,275)(273,274)(295,442)(296,448)(297,447)(298,446)(299,445)
(300,444)(301,443)(302,490)(303,489)(304,488)(305,487)(306,486)(307,485)
(308,484)(309,483)(310,482)(311,481)(312,480)(313,479)(314,478)(315,477)
(316,476)(317,475)(318,474)(319,473)(320,472)(321,471)(322,470)(323,469)
(324,468)(325,467)(326,466)(327,465)(328,464)(329,463)(330,462)(331,461)
(332,460)(333,459)(334,458)(335,457)(336,456)(337,455)(338,454)(339,453)
(340,452)(341,451)(342,450)(343,449)(344,393)(345,399)(346,398)(347,397)
(348,396)(349,395)(350,394)(351,441)(352,440)(353,439)(354,438)(355,437)
(356,436)(357,435)(358,434)(359,433)(360,432)(361,431)(362,430)(363,429)
(364,428)(365,427)(366,426)(367,425)(368,424)(369,423)(370,422)(371,421)
(372,420)(373,419)(374,418)(375,417)(376,416)(377,415)(378,414)(379,413)
(380,412)(381,411)(382,410)(383,409)(384,408)(385,407)(386,406)(387,405)
(388,404)(389,403)(390,402)(391,401)(392,400);
s1 := Sym(490)!(  1,302)(  2,308)(  3,307)(  4,306)(  5,305)(  6,304)(  7,303)
(  8,295)(  9,301)( 10,300)( 11,299)( 12,298)( 13,297)( 14,296)( 15,343)
( 16,342)( 17,341)( 18,340)( 19,339)( 20,338)( 21,337)( 22,336)( 23,335)
( 24,334)( 25,333)( 26,332)( 27,331)( 28,330)( 29,329)( 30,328)( 31,327)
( 32,326)( 33,325)( 34,324)( 35,323)( 36,322)( 37,321)( 38,320)( 39,319)
( 40,318)( 41,317)( 42,316)( 43,315)( 44,314)( 45,313)( 46,312)( 47,311)
( 48,310)( 49,309)( 50,253)( 51,259)( 52,258)( 53,257)( 54,256)( 55,255)
( 56,254)( 57,246)( 58,252)( 59,251)( 60,250)( 61,249)( 62,248)( 63,247)
( 64,294)( 65,293)( 66,292)( 67,291)( 68,290)( 69,289)( 70,288)( 71,287)
( 72,286)( 73,285)( 74,284)( 75,283)( 76,282)( 77,281)( 78,280)( 79,279)
( 80,278)( 81,277)( 82,276)( 83,275)( 84,274)( 85,273)( 86,272)( 87,271)
( 88,270)( 89,269)( 90,268)( 91,267)( 92,266)( 93,265)( 94,264)( 95,263)
( 96,262)( 97,261)( 98,260)( 99,449)(100,455)(101,454)(102,453)(103,452)
(104,451)(105,450)(106,442)(107,448)(108,447)(109,446)(110,445)(111,444)
(112,443)(113,490)(114,489)(115,488)(116,487)(117,486)(118,485)(119,484)
(120,483)(121,482)(122,481)(123,480)(124,479)(125,478)(126,477)(127,476)
(128,475)(129,474)(130,473)(131,472)(132,471)(133,470)(134,469)(135,468)
(136,467)(137,466)(138,465)(139,464)(140,463)(141,462)(142,461)(143,460)
(144,459)(145,458)(146,457)(147,456)(148,400)(149,406)(150,405)(151,404)
(152,403)(153,402)(154,401)(155,393)(156,399)(157,398)(158,397)(159,396)
(160,395)(161,394)(162,441)(163,440)(164,439)(165,438)(166,437)(167,436)
(168,435)(169,434)(170,433)(171,432)(172,431)(173,430)(174,429)(175,428)
(176,427)(177,426)(178,425)(179,424)(180,423)(181,422)(182,421)(183,420)
(184,419)(185,418)(186,417)(187,416)(188,415)(189,414)(190,413)(191,412)
(192,411)(193,410)(194,409)(195,408)(196,407)(197,351)(198,357)(199,356)
(200,355)(201,354)(202,353)(203,352)(204,344)(205,350)(206,349)(207,348)
(208,347)(209,346)(210,345)(211,392)(212,391)(213,390)(214,389)(215,388)
(216,387)(217,386)(218,385)(219,384)(220,383)(221,382)(222,381)(223,380)
(224,379)(225,378)(226,377)(227,376)(228,375)(229,374)(230,373)(231,372)
(232,371)(233,370)(234,369)(235,368)(236,367)(237,366)(238,365)(239,364)
(240,363)(241,362)(242,361)(243,360)(244,359)(245,358);
poly := sub<Sym(490)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope