Polytope of Type {494}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {494}*988
Also Known As : 494-gon, {494}. if this polytope has another name.
Group : SmallGroup(988,10)
Rank : 2
Schlafli Type : {494}
Number of vertices, edges, etc : 494, 494
Order of s0s1 : 494
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {494,2} of size 1976
Vertex Figure Of :
   {2,494} of size 1976
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {247}*494
   13-fold quotients : {38}*76
   19-fold quotients : {26}*52
   26-fold quotients : {19}*38
   38-fold quotients : {13}*26
   247-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {988}*1976
Permutation Representation (GAP) :
s0 := (  2, 19)(  3, 18)(  4, 17)(  5, 16)(  6, 15)(  7, 14)(  8, 13)(  9, 12)
( 10, 11)( 20,229)( 21,247)( 22,246)( 23,245)( 24,244)( 25,243)( 26,242)
( 27,241)( 28,240)( 29,239)( 30,238)( 31,237)( 32,236)( 33,235)( 34,234)
( 35,233)( 36,232)( 37,231)( 38,230)( 39,210)( 40,228)( 41,227)( 42,226)
( 43,225)( 44,224)( 45,223)( 46,222)( 47,221)( 48,220)( 49,219)( 50,218)
( 51,217)( 52,216)( 53,215)( 54,214)( 55,213)( 56,212)( 57,211)( 58,191)
( 59,209)( 60,208)( 61,207)( 62,206)( 63,205)( 64,204)( 65,203)( 66,202)
( 67,201)( 68,200)( 69,199)( 70,198)( 71,197)( 72,196)( 73,195)( 74,194)
( 75,193)( 76,192)( 77,172)( 78,190)( 79,189)( 80,188)( 81,187)( 82,186)
( 83,185)( 84,184)( 85,183)( 86,182)( 87,181)( 88,180)( 89,179)( 90,178)
( 91,177)( 92,176)( 93,175)( 94,174)( 95,173)( 96,153)( 97,171)( 98,170)
( 99,169)(100,168)(101,167)(102,166)(103,165)(104,164)(105,163)(106,162)
(107,161)(108,160)(109,159)(110,158)(111,157)(112,156)(113,155)(114,154)
(115,134)(116,152)(117,151)(118,150)(119,149)(120,148)(121,147)(122,146)
(123,145)(124,144)(125,143)(126,142)(127,141)(128,140)(129,139)(130,138)
(131,137)(132,136)(133,135)(249,266)(250,265)(251,264)(252,263)(253,262)
(254,261)(255,260)(256,259)(257,258)(267,476)(268,494)(269,493)(270,492)
(271,491)(272,490)(273,489)(274,488)(275,487)(276,486)(277,485)(278,484)
(279,483)(280,482)(281,481)(282,480)(283,479)(284,478)(285,477)(286,457)
(287,475)(288,474)(289,473)(290,472)(291,471)(292,470)(293,469)(294,468)
(295,467)(296,466)(297,465)(298,464)(299,463)(300,462)(301,461)(302,460)
(303,459)(304,458)(305,438)(306,456)(307,455)(308,454)(309,453)(310,452)
(311,451)(312,450)(313,449)(314,448)(315,447)(316,446)(317,445)(318,444)
(319,443)(320,442)(321,441)(322,440)(323,439)(324,419)(325,437)(326,436)
(327,435)(328,434)(329,433)(330,432)(331,431)(332,430)(333,429)(334,428)
(335,427)(336,426)(337,425)(338,424)(339,423)(340,422)(341,421)(342,420)
(343,400)(344,418)(345,417)(346,416)(347,415)(348,414)(349,413)(350,412)
(351,411)(352,410)(353,409)(354,408)(355,407)(356,406)(357,405)(358,404)
(359,403)(360,402)(361,401)(362,381)(363,399)(364,398)(365,397)(366,396)
(367,395)(368,394)(369,393)(370,392)(371,391)(372,390)(373,389)(374,388)
(375,387)(376,386)(377,385)(378,384)(379,383)(380,382);;
s1 := (  1,268)(  2,267)(  3,285)(  4,284)(  5,283)(  6,282)(  7,281)(  8,280)
(  9,279)( 10,278)( 11,277)( 12,276)( 13,275)( 14,274)( 15,273)( 16,272)
( 17,271)( 18,270)( 19,269)( 20,249)( 21,248)( 22,266)( 23,265)( 24,264)
( 25,263)( 26,262)( 27,261)( 28,260)( 29,259)( 30,258)( 31,257)( 32,256)
( 33,255)( 34,254)( 35,253)( 36,252)( 37,251)( 38,250)( 39,477)( 40,476)
( 41,494)( 42,493)( 43,492)( 44,491)( 45,490)( 46,489)( 47,488)( 48,487)
( 49,486)( 50,485)( 51,484)( 52,483)( 53,482)( 54,481)( 55,480)( 56,479)
( 57,478)( 58,458)( 59,457)( 60,475)( 61,474)( 62,473)( 63,472)( 64,471)
( 65,470)( 66,469)( 67,468)( 68,467)( 69,466)( 70,465)( 71,464)( 72,463)
( 73,462)( 74,461)( 75,460)( 76,459)( 77,439)( 78,438)( 79,456)( 80,455)
( 81,454)( 82,453)( 83,452)( 84,451)( 85,450)( 86,449)( 87,448)( 88,447)
( 89,446)( 90,445)( 91,444)( 92,443)( 93,442)( 94,441)( 95,440)( 96,420)
( 97,419)( 98,437)( 99,436)(100,435)(101,434)(102,433)(103,432)(104,431)
(105,430)(106,429)(107,428)(108,427)(109,426)(110,425)(111,424)(112,423)
(113,422)(114,421)(115,401)(116,400)(117,418)(118,417)(119,416)(120,415)
(121,414)(122,413)(123,412)(124,411)(125,410)(126,409)(127,408)(128,407)
(129,406)(130,405)(131,404)(132,403)(133,402)(134,382)(135,381)(136,399)
(137,398)(138,397)(139,396)(140,395)(141,394)(142,393)(143,392)(144,391)
(145,390)(146,389)(147,388)(148,387)(149,386)(150,385)(151,384)(152,383)
(153,363)(154,362)(155,380)(156,379)(157,378)(158,377)(159,376)(160,375)
(161,374)(162,373)(163,372)(164,371)(165,370)(166,369)(167,368)(168,367)
(169,366)(170,365)(171,364)(172,344)(173,343)(174,361)(175,360)(176,359)
(177,358)(178,357)(179,356)(180,355)(181,354)(182,353)(183,352)(184,351)
(185,350)(186,349)(187,348)(188,347)(189,346)(190,345)(191,325)(192,324)
(193,342)(194,341)(195,340)(196,339)(197,338)(198,337)(199,336)(200,335)
(201,334)(202,333)(203,332)(204,331)(205,330)(206,329)(207,328)(208,327)
(209,326)(210,306)(211,305)(212,323)(213,322)(214,321)(215,320)(216,319)
(217,318)(218,317)(219,316)(220,315)(221,314)(222,313)(223,312)(224,311)
(225,310)(226,309)(227,308)(228,307)(229,287)(230,286)(231,304)(232,303)
(233,302)(234,301)(235,300)(236,299)(237,298)(238,297)(239,296)(240,295)
(241,294)(242,293)(243,292)(244,291)(245,290)(246,289)(247,288);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(494)!(  2, 19)(  3, 18)(  4, 17)(  5, 16)(  6, 15)(  7, 14)(  8, 13)
(  9, 12)( 10, 11)( 20,229)( 21,247)( 22,246)( 23,245)( 24,244)( 25,243)
( 26,242)( 27,241)( 28,240)( 29,239)( 30,238)( 31,237)( 32,236)( 33,235)
( 34,234)( 35,233)( 36,232)( 37,231)( 38,230)( 39,210)( 40,228)( 41,227)
( 42,226)( 43,225)( 44,224)( 45,223)( 46,222)( 47,221)( 48,220)( 49,219)
( 50,218)( 51,217)( 52,216)( 53,215)( 54,214)( 55,213)( 56,212)( 57,211)
( 58,191)( 59,209)( 60,208)( 61,207)( 62,206)( 63,205)( 64,204)( 65,203)
( 66,202)( 67,201)( 68,200)( 69,199)( 70,198)( 71,197)( 72,196)( 73,195)
( 74,194)( 75,193)( 76,192)( 77,172)( 78,190)( 79,189)( 80,188)( 81,187)
( 82,186)( 83,185)( 84,184)( 85,183)( 86,182)( 87,181)( 88,180)( 89,179)
( 90,178)( 91,177)( 92,176)( 93,175)( 94,174)( 95,173)( 96,153)( 97,171)
( 98,170)( 99,169)(100,168)(101,167)(102,166)(103,165)(104,164)(105,163)
(106,162)(107,161)(108,160)(109,159)(110,158)(111,157)(112,156)(113,155)
(114,154)(115,134)(116,152)(117,151)(118,150)(119,149)(120,148)(121,147)
(122,146)(123,145)(124,144)(125,143)(126,142)(127,141)(128,140)(129,139)
(130,138)(131,137)(132,136)(133,135)(249,266)(250,265)(251,264)(252,263)
(253,262)(254,261)(255,260)(256,259)(257,258)(267,476)(268,494)(269,493)
(270,492)(271,491)(272,490)(273,489)(274,488)(275,487)(276,486)(277,485)
(278,484)(279,483)(280,482)(281,481)(282,480)(283,479)(284,478)(285,477)
(286,457)(287,475)(288,474)(289,473)(290,472)(291,471)(292,470)(293,469)
(294,468)(295,467)(296,466)(297,465)(298,464)(299,463)(300,462)(301,461)
(302,460)(303,459)(304,458)(305,438)(306,456)(307,455)(308,454)(309,453)
(310,452)(311,451)(312,450)(313,449)(314,448)(315,447)(316,446)(317,445)
(318,444)(319,443)(320,442)(321,441)(322,440)(323,439)(324,419)(325,437)
(326,436)(327,435)(328,434)(329,433)(330,432)(331,431)(332,430)(333,429)
(334,428)(335,427)(336,426)(337,425)(338,424)(339,423)(340,422)(341,421)
(342,420)(343,400)(344,418)(345,417)(346,416)(347,415)(348,414)(349,413)
(350,412)(351,411)(352,410)(353,409)(354,408)(355,407)(356,406)(357,405)
(358,404)(359,403)(360,402)(361,401)(362,381)(363,399)(364,398)(365,397)
(366,396)(367,395)(368,394)(369,393)(370,392)(371,391)(372,390)(373,389)
(374,388)(375,387)(376,386)(377,385)(378,384)(379,383)(380,382);
s1 := Sym(494)!(  1,268)(  2,267)(  3,285)(  4,284)(  5,283)(  6,282)(  7,281)
(  8,280)(  9,279)( 10,278)( 11,277)( 12,276)( 13,275)( 14,274)( 15,273)
( 16,272)( 17,271)( 18,270)( 19,269)( 20,249)( 21,248)( 22,266)( 23,265)
( 24,264)( 25,263)( 26,262)( 27,261)( 28,260)( 29,259)( 30,258)( 31,257)
( 32,256)( 33,255)( 34,254)( 35,253)( 36,252)( 37,251)( 38,250)( 39,477)
( 40,476)( 41,494)( 42,493)( 43,492)( 44,491)( 45,490)( 46,489)( 47,488)
( 48,487)( 49,486)( 50,485)( 51,484)( 52,483)( 53,482)( 54,481)( 55,480)
( 56,479)( 57,478)( 58,458)( 59,457)( 60,475)( 61,474)( 62,473)( 63,472)
( 64,471)( 65,470)( 66,469)( 67,468)( 68,467)( 69,466)( 70,465)( 71,464)
( 72,463)( 73,462)( 74,461)( 75,460)( 76,459)( 77,439)( 78,438)( 79,456)
( 80,455)( 81,454)( 82,453)( 83,452)( 84,451)( 85,450)( 86,449)( 87,448)
( 88,447)( 89,446)( 90,445)( 91,444)( 92,443)( 93,442)( 94,441)( 95,440)
( 96,420)( 97,419)( 98,437)( 99,436)(100,435)(101,434)(102,433)(103,432)
(104,431)(105,430)(106,429)(107,428)(108,427)(109,426)(110,425)(111,424)
(112,423)(113,422)(114,421)(115,401)(116,400)(117,418)(118,417)(119,416)
(120,415)(121,414)(122,413)(123,412)(124,411)(125,410)(126,409)(127,408)
(128,407)(129,406)(130,405)(131,404)(132,403)(133,402)(134,382)(135,381)
(136,399)(137,398)(138,397)(139,396)(140,395)(141,394)(142,393)(143,392)
(144,391)(145,390)(146,389)(147,388)(148,387)(149,386)(150,385)(151,384)
(152,383)(153,363)(154,362)(155,380)(156,379)(157,378)(158,377)(159,376)
(160,375)(161,374)(162,373)(163,372)(164,371)(165,370)(166,369)(167,368)
(168,367)(169,366)(170,365)(171,364)(172,344)(173,343)(174,361)(175,360)
(176,359)(177,358)(178,357)(179,356)(180,355)(181,354)(182,353)(183,352)
(184,351)(185,350)(186,349)(187,348)(188,347)(189,346)(190,345)(191,325)
(192,324)(193,342)(194,341)(195,340)(196,339)(197,338)(198,337)(199,336)
(200,335)(201,334)(202,333)(203,332)(204,331)(205,330)(206,329)(207,328)
(208,327)(209,326)(210,306)(211,305)(212,323)(213,322)(214,321)(215,320)
(216,319)(217,318)(218,317)(219,316)(220,315)(221,314)(222,313)(223,312)
(224,311)(225,310)(226,309)(227,308)(228,307)(229,287)(230,286)(231,304)
(232,303)(233,302)(234,301)(235,300)(236,299)(237,298)(238,297)(239,296)
(240,295)(241,294)(242,293)(243,292)(244,291)(245,290)(246,289)(247,288);
poly := sub<Sym(494)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope