Polytope of Type {26}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {26}*52
Also Known As : 26-gon, {26}. if this polytope has another name.
Group : SmallGroup(52,4)
Rank : 2
Schlafli Type : {26}
Number of vertices, edges, etc : 26, 26
Order of s0s1 : 26
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {26,2} of size 104
   {26,4} of size 208
   {26,6} of size 312
   {26,8} of size 416
   {26,10} of size 520
   {26,12} of size 624
   {26,13} of size 676
   {26,14} of size 728
   {26,16} of size 832
   {26,18} of size 936
   {26,20} of size 1040
   {26,22} of size 1144
   {26,24} of size 1248
   {26,4} of size 1352
   {26,26} of size 1352
   {26,26} of size 1352
   {26,26} of size 1352
   {26,28} of size 1456
   {26,30} of size 1560
   {26,32} of size 1664
   {26,34} of size 1768
   {26,36} of size 1872
   {26,38} of size 1976
Vertex Figure Of :
   {2,26} of size 104
   {4,26} of size 208
   {6,26} of size 312
   {8,26} of size 416
   {10,26} of size 520
   {12,26} of size 624
   {13,26} of size 676
   {14,26} of size 728
   {16,26} of size 832
   {18,26} of size 936
   {20,26} of size 1040
   {22,26} of size 1144
   {24,26} of size 1248
   {4,26} of size 1352
   {26,26} of size 1352
   {26,26} of size 1352
   {26,26} of size 1352
   {28,26} of size 1456
   {30,26} of size 1560
   {32,26} of size 1664
   {34,26} of size 1768
   {36,26} of size 1872
   {38,26} of size 1976
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {13}*26
   13-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {52}*104
   3-fold covers : {78}*156
   4-fold covers : {104}*208
   5-fold covers : {130}*260
   6-fold covers : {156}*312
   7-fold covers : {182}*364
   8-fold covers : {208}*416
   9-fold covers : {234}*468
   10-fold covers : {260}*520
   11-fold covers : {286}*572
   12-fold covers : {312}*624
   13-fold covers : {338}*676
   14-fold covers : {364}*728
   15-fold covers : {390}*780
   16-fold covers : {416}*832
   17-fold covers : {442}*884
   18-fold covers : {468}*936
   19-fold covers : {494}*988
   20-fold covers : {520}*1040
   21-fold covers : {546}*1092
   22-fold covers : {572}*1144
   23-fold covers : {598}*1196
   24-fold covers : {624}*1248
   25-fold covers : {650}*1300
   26-fold covers : {676}*1352
   27-fold covers : {702}*1404
   28-fold covers : {728}*1456
   29-fold covers : {754}*1508
   30-fold covers : {780}*1560
   31-fold covers : {806}*1612
   32-fold covers : {832}*1664
   33-fold covers : {858}*1716
   34-fold covers : {884}*1768
   35-fold covers : {910}*1820
   36-fold covers : {936}*1872
   37-fold covers : {962}*1924
   38-fold covers : {988}*1976
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)
(23,24)(25,26);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,17)(14,15)(16,21)(18,19)
(20,25)(22,23)(24,26);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(26)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26);
s1 := Sym(26)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,17)(14,15)(16,21)
(18,19)(20,25)(22,23)(24,26);
poly := sub<Sym(26)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope