include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {520}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {520}*1040
Also Known As : 520-gon, {520}. if this polytope has another name.
Group : SmallGroup(1040,71)
Rank : 2
Schlafli Type : {520}
Number of vertices, edges, etc : 520, 520
Order of s0s1 : 520
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {260}*520
4-fold quotients : {130}*260
5-fold quotients : {104}*208
8-fold quotients : {65}*130
10-fold quotients : {52}*104
13-fold quotients : {40}*80
20-fold quotients : {26}*52
26-fold quotients : {20}*40
40-fold quotients : {13}*26
52-fold quotients : {10}*20
65-fold quotients : {8}*16
104-fold quotients : {5}*10
130-fold quotients : {4}*8
260-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 13)( 3, 12)( 4, 11)( 5, 10)( 6, 9)( 7, 8)( 14, 53)( 15, 65)
( 16, 64)( 17, 63)( 18, 62)( 19, 61)( 20, 60)( 21, 59)( 22, 58)( 23, 57)
( 24, 56)( 25, 55)( 26, 54)( 27, 40)( 28, 52)( 29, 51)( 30, 50)( 31, 49)
( 32, 48)( 33, 47)( 34, 46)( 35, 45)( 36, 44)( 37, 43)( 38, 42)( 39, 41)
( 67, 78)( 68, 77)( 69, 76)( 70, 75)( 71, 74)( 72, 73)( 79,118)( 80,130)
( 81,129)( 82,128)( 83,127)( 84,126)( 85,125)( 86,124)( 87,123)( 88,122)
( 89,121)( 90,120)( 91,119)( 92,105)( 93,117)( 94,116)( 95,115)( 96,114)
( 97,113)( 98,112)( 99,111)(100,110)(101,109)(102,108)(103,107)(104,106)
(131,196)(132,208)(133,207)(134,206)(135,205)(136,204)(137,203)(138,202)
(139,201)(140,200)(141,199)(142,198)(143,197)(144,248)(145,260)(146,259)
(147,258)(148,257)(149,256)(150,255)(151,254)(152,253)(153,252)(154,251)
(155,250)(156,249)(157,235)(158,247)(159,246)(160,245)(161,244)(162,243)
(163,242)(164,241)(165,240)(166,239)(167,238)(168,237)(169,236)(170,222)
(171,234)(172,233)(173,232)(174,231)(175,230)(176,229)(177,228)(178,227)
(179,226)(180,225)(181,224)(182,223)(183,209)(184,221)(185,220)(186,219)
(187,218)(188,217)(189,216)(190,215)(191,214)(192,213)(193,212)(194,211)
(195,210)(261,391)(262,403)(263,402)(264,401)(265,400)(266,399)(267,398)
(268,397)(269,396)(270,395)(271,394)(272,393)(273,392)(274,443)(275,455)
(276,454)(277,453)(278,452)(279,451)(280,450)(281,449)(282,448)(283,447)
(284,446)(285,445)(286,444)(287,430)(288,442)(289,441)(290,440)(291,439)
(292,438)(293,437)(294,436)(295,435)(296,434)(297,433)(298,432)(299,431)
(300,417)(301,429)(302,428)(303,427)(304,426)(305,425)(306,424)(307,423)
(308,422)(309,421)(310,420)(311,419)(312,418)(313,404)(314,416)(315,415)
(316,414)(317,413)(318,412)(319,411)(320,410)(321,409)(322,408)(323,407)
(324,406)(325,405)(326,456)(327,468)(328,467)(329,466)(330,465)(331,464)
(332,463)(333,462)(334,461)(335,460)(336,459)(337,458)(338,457)(339,508)
(340,520)(341,519)(342,518)(343,517)(344,516)(345,515)(346,514)(347,513)
(348,512)(349,511)(350,510)(351,509)(352,495)(353,507)(354,506)(355,505)
(356,504)(357,503)(358,502)(359,501)(360,500)(361,499)(362,498)(363,497)
(364,496)(365,482)(366,494)(367,493)(368,492)(369,491)(370,490)(371,489)
(372,488)(373,487)(374,486)(375,485)(376,484)(377,483)(378,469)(379,481)
(380,480)(381,479)(382,478)(383,477)(384,476)(385,475)(386,474)(387,473)
(388,472)(389,471)(390,470);;
s1 := ( 1,275)( 2,274)( 3,286)( 4,285)( 5,284)( 6,283)( 7,282)( 8,281)
( 9,280)( 10,279)( 11,278)( 12,277)( 13,276)( 14,262)( 15,261)( 16,273)
( 17,272)( 18,271)( 19,270)( 20,269)( 21,268)( 22,267)( 23,266)( 24,265)
( 25,264)( 26,263)( 27,314)( 28,313)( 29,325)( 30,324)( 31,323)( 32,322)
( 33,321)( 34,320)( 35,319)( 36,318)( 37,317)( 38,316)( 39,315)( 40,301)
( 41,300)( 42,312)( 43,311)( 44,310)( 45,309)( 46,308)( 47,307)( 48,306)
( 49,305)( 50,304)( 51,303)( 52,302)( 53,288)( 54,287)( 55,299)( 56,298)
( 57,297)( 58,296)( 59,295)( 60,294)( 61,293)( 62,292)( 63,291)( 64,290)
( 65,289)( 66,340)( 67,339)( 68,351)( 69,350)( 70,349)( 71,348)( 72,347)
( 73,346)( 74,345)( 75,344)( 76,343)( 77,342)( 78,341)( 79,327)( 80,326)
( 81,338)( 82,337)( 83,336)( 84,335)( 85,334)( 86,333)( 87,332)( 88,331)
( 89,330)( 90,329)( 91,328)( 92,379)( 93,378)( 94,390)( 95,389)( 96,388)
( 97,387)( 98,386)( 99,385)(100,384)(101,383)(102,382)(103,381)(104,380)
(105,366)(106,365)(107,377)(108,376)(109,375)(110,374)(111,373)(112,372)
(113,371)(114,370)(115,369)(116,368)(117,367)(118,353)(119,352)(120,364)
(121,363)(122,362)(123,361)(124,360)(125,359)(126,358)(127,357)(128,356)
(129,355)(130,354)(131,470)(132,469)(133,481)(134,480)(135,479)(136,478)
(137,477)(138,476)(139,475)(140,474)(141,473)(142,472)(143,471)(144,457)
(145,456)(146,468)(147,467)(148,466)(149,465)(150,464)(151,463)(152,462)
(153,461)(154,460)(155,459)(156,458)(157,509)(158,508)(159,520)(160,519)
(161,518)(162,517)(163,516)(164,515)(165,514)(166,513)(167,512)(168,511)
(169,510)(170,496)(171,495)(172,507)(173,506)(174,505)(175,504)(176,503)
(177,502)(178,501)(179,500)(180,499)(181,498)(182,497)(183,483)(184,482)
(185,494)(186,493)(187,492)(188,491)(189,490)(190,489)(191,488)(192,487)
(193,486)(194,485)(195,484)(196,405)(197,404)(198,416)(199,415)(200,414)
(201,413)(202,412)(203,411)(204,410)(205,409)(206,408)(207,407)(208,406)
(209,392)(210,391)(211,403)(212,402)(213,401)(214,400)(215,399)(216,398)
(217,397)(218,396)(219,395)(220,394)(221,393)(222,444)(223,443)(224,455)
(225,454)(226,453)(227,452)(228,451)(229,450)(230,449)(231,448)(232,447)
(233,446)(234,445)(235,431)(236,430)(237,442)(238,441)(239,440)(240,439)
(241,438)(242,437)(243,436)(244,435)(245,434)(246,433)(247,432)(248,418)
(249,417)(250,429)(251,428)(252,427)(253,426)(254,425)(255,424)(256,423)
(257,422)(258,421)(259,420)(260,419);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(520)!( 2, 13)( 3, 12)( 4, 11)( 5, 10)( 6, 9)( 7, 8)( 14, 53)
( 15, 65)( 16, 64)( 17, 63)( 18, 62)( 19, 61)( 20, 60)( 21, 59)( 22, 58)
( 23, 57)( 24, 56)( 25, 55)( 26, 54)( 27, 40)( 28, 52)( 29, 51)( 30, 50)
( 31, 49)( 32, 48)( 33, 47)( 34, 46)( 35, 45)( 36, 44)( 37, 43)( 38, 42)
( 39, 41)( 67, 78)( 68, 77)( 69, 76)( 70, 75)( 71, 74)( 72, 73)( 79,118)
( 80,130)( 81,129)( 82,128)( 83,127)( 84,126)( 85,125)( 86,124)( 87,123)
( 88,122)( 89,121)( 90,120)( 91,119)( 92,105)( 93,117)( 94,116)( 95,115)
( 96,114)( 97,113)( 98,112)( 99,111)(100,110)(101,109)(102,108)(103,107)
(104,106)(131,196)(132,208)(133,207)(134,206)(135,205)(136,204)(137,203)
(138,202)(139,201)(140,200)(141,199)(142,198)(143,197)(144,248)(145,260)
(146,259)(147,258)(148,257)(149,256)(150,255)(151,254)(152,253)(153,252)
(154,251)(155,250)(156,249)(157,235)(158,247)(159,246)(160,245)(161,244)
(162,243)(163,242)(164,241)(165,240)(166,239)(167,238)(168,237)(169,236)
(170,222)(171,234)(172,233)(173,232)(174,231)(175,230)(176,229)(177,228)
(178,227)(179,226)(180,225)(181,224)(182,223)(183,209)(184,221)(185,220)
(186,219)(187,218)(188,217)(189,216)(190,215)(191,214)(192,213)(193,212)
(194,211)(195,210)(261,391)(262,403)(263,402)(264,401)(265,400)(266,399)
(267,398)(268,397)(269,396)(270,395)(271,394)(272,393)(273,392)(274,443)
(275,455)(276,454)(277,453)(278,452)(279,451)(280,450)(281,449)(282,448)
(283,447)(284,446)(285,445)(286,444)(287,430)(288,442)(289,441)(290,440)
(291,439)(292,438)(293,437)(294,436)(295,435)(296,434)(297,433)(298,432)
(299,431)(300,417)(301,429)(302,428)(303,427)(304,426)(305,425)(306,424)
(307,423)(308,422)(309,421)(310,420)(311,419)(312,418)(313,404)(314,416)
(315,415)(316,414)(317,413)(318,412)(319,411)(320,410)(321,409)(322,408)
(323,407)(324,406)(325,405)(326,456)(327,468)(328,467)(329,466)(330,465)
(331,464)(332,463)(333,462)(334,461)(335,460)(336,459)(337,458)(338,457)
(339,508)(340,520)(341,519)(342,518)(343,517)(344,516)(345,515)(346,514)
(347,513)(348,512)(349,511)(350,510)(351,509)(352,495)(353,507)(354,506)
(355,505)(356,504)(357,503)(358,502)(359,501)(360,500)(361,499)(362,498)
(363,497)(364,496)(365,482)(366,494)(367,493)(368,492)(369,491)(370,490)
(371,489)(372,488)(373,487)(374,486)(375,485)(376,484)(377,483)(378,469)
(379,481)(380,480)(381,479)(382,478)(383,477)(384,476)(385,475)(386,474)
(387,473)(388,472)(389,471)(390,470);
s1 := Sym(520)!( 1,275)( 2,274)( 3,286)( 4,285)( 5,284)( 6,283)( 7,282)
( 8,281)( 9,280)( 10,279)( 11,278)( 12,277)( 13,276)( 14,262)( 15,261)
( 16,273)( 17,272)( 18,271)( 19,270)( 20,269)( 21,268)( 22,267)( 23,266)
( 24,265)( 25,264)( 26,263)( 27,314)( 28,313)( 29,325)( 30,324)( 31,323)
( 32,322)( 33,321)( 34,320)( 35,319)( 36,318)( 37,317)( 38,316)( 39,315)
( 40,301)( 41,300)( 42,312)( 43,311)( 44,310)( 45,309)( 46,308)( 47,307)
( 48,306)( 49,305)( 50,304)( 51,303)( 52,302)( 53,288)( 54,287)( 55,299)
( 56,298)( 57,297)( 58,296)( 59,295)( 60,294)( 61,293)( 62,292)( 63,291)
( 64,290)( 65,289)( 66,340)( 67,339)( 68,351)( 69,350)( 70,349)( 71,348)
( 72,347)( 73,346)( 74,345)( 75,344)( 76,343)( 77,342)( 78,341)( 79,327)
( 80,326)( 81,338)( 82,337)( 83,336)( 84,335)( 85,334)( 86,333)( 87,332)
( 88,331)( 89,330)( 90,329)( 91,328)( 92,379)( 93,378)( 94,390)( 95,389)
( 96,388)( 97,387)( 98,386)( 99,385)(100,384)(101,383)(102,382)(103,381)
(104,380)(105,366)(106,365)(107,377)(108,376)(109,375)(110,374)(111,373)
(112,372)(113,371)(114,370)(115,369)(116,368)(117,367)(118,353)(119,352)
(120,364)(121,363)(122,362)(123,361)(124,360)(125,359)(126,358)(127,357)
(128,356)(129,355)(130,354)(131,470)(132,469)(133,481)(134,480)(135,479)
(136,478)(137,477)(138,476)(139,475)(140,474)(141,473)(142,472)(143,471)
(144,457)(145,456)(146,468)(147,467)(148,466)(149,465)(150,464)(151,463)
(152,462)(153,461)(154,460)(155,459)(156,458)(157,509)(158,508)(159,520)
(160,519)(161,518)(162,517)(163,516)(164,515)(165,514)(166,513)(167,512)
(168,511)(169,510)(170,496)(171,495)(172,507)(173,506)(174,505)(175,504)
(176,503)(177,502)(178,501)(179,500)(180,499)(181,498)(182,497)(183,483)
(184,482)(185,494)(186,493)(187,492)(188,491)(189,490)(190,489)(191,488)
(192,487)(193,486)(194,485)(195,484)(196,405)(197,404)(198,416)(199,415)
(200,414)(201,413)(202,412)(203,411)(204,410)(205,409)(206,408)(207,407)
(208,406)(209,392)(210,391)(211,403)(212,402)(213,401)(214,400)(215,399)
(216,398)(217,397)(218,396)(219,395)(220,394)(221,393)(222,444)(223,443)
(224,455)(225,454)(226,453)(227,452)(228,451)(229,450)(230,449)(231,448)
(232,447)(233,446)(234,445)(235,431)(236,430)(237,442)(238,441)(239,440)
(240,439)(241,438)(242,437)(243,436)(244,435)(245,434)(246,433)(247,432)
(248,418)(249,417)(250,429)(251,428)(252,427)(253,426)(254,425)(255,424)
(256,423)(257,422)(258,421)(259,420)(260,419);
poly := sub<Sym(520)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope