Polytope of Type {104}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {104}*208
Also Known As : 104-gon, {104}. if this polytope has another name.
Group : SmallGroup(208,7)
Rank : 2
Schlafli Type : {104}
Number of vertices, edges, etc : 104, 104
Order of s0s1 : 104
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {104,2} of size 416
   {104,4} of size 832
   {104,4} of size 832
   {104,6} of size 1248
   {104,4} of size 1664
   {104,8} of size 1664
   {104,8} of size 1664
   {104,8} of size 1664
   {104,8} of size 1664
   {104,4} of size 1664
Vertex Figure Of :
   {2,104} of size 416
   {4,104} of size 832
   {4,104} of size 832
   {6,104} of size 1248
   {4,104} of size 1664
   {8,104} of size 1664
   {8,104} of size 1664
   {8,104} of size 1664
   {8,104} of size 1664
   {4,104} of size 1664
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {52}*104
   4-fold quotients : {26}*52
   8-fold quotients : {13}*26
   13-fold quotients : {8}*16
   26-fold quotients : {4}*8
   52-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {208}*416
   3-fold covers : {312}*624
   4-fold covers : {416}*832
   5-fold covers : {520}*1040
   6-fold covers : {624}*1248
   7-fold covers : {728}*1456
   8-fold covers : {832}*1664
   9-fold covers : {936}*1872
Permutation Representation (GAP) :
s0 := (  2, 13)(  3, 12)(  4, 11)(  5, 10)(  6,  9)(  7,  8)( 15, 26)( 16, 25)
( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 27, 40)( 28, 52)( 29, 51)( 30, 50)
( 31, 49)( 32, 48)( 33, 47)( 34, 46)( 35, 45)( 36, 44)( 37, 43)( 38, 42)
( 39, 41)( 53, 79)( 54, 91)( 55, 90)( 56, 89)( 57, 88)( 58, 87)( 59, 86)
( 60, 85)( 61, 84)( 62, 83)( 63, 82)( 64, 81)( 65, 80)( 66, 92)( 67,104)
( 68,103)( 69,102)( 70,101)( 71,100)( 72, 99)( 73, 98)( 74, 97)( 75, 96)
( 76, 95)( 77, 94)( 78, 93);;
s1 := (  1, 54)(  2, 53)(  3, 65)(  4, 64)(  5, 63)(  6, 62)(  7, 61)(  8, 60)
(  9, 59)( 10, 58)( 11, 57)( 12, 56)( 13, 55)( 14, 67)( 15, 66)( 16, 78)
( 17, 77)( 18, 76)( 19, 75)( 20, 74)( 21, 73)( 22, 72)( 23, 71)( 24, 70)
( 25, 69)( 26, 68)( 27, 93)( 28, 92)( 29,104)( 30,103)( 31,102)( 32,101)
( 33,100)( 34, 99)( 35, 98)( 36, 97)( 37, 96)( 38, 95)( 39, 94)( 40, 80)
( 41, 79)( 42, 91)( 43, 90)( 44, 89)( 45, 88)( 46, 87)( 47, 86)( 48, 85)
( 49, 84)( 50, 83)( 51, 82)( 52, 81);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(104)!(  2, 13)(  3, 12)(  4, 11)(  5, 10)(  6,  9)(  7,  8)( 15, 26)
( 16, 25)( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 27, 40)( 28, 52)( 29, 51)
( 30, 50)( 31, 49)( 32, 48)( 33, 47)( 34, 46)( 35, 45)( 36, 44)( 37, 43)
( 38, 42)( 39, 41)( 53, 79)( 54, 91)( 55, 90)( 56, 89)( 57, 88)( 58, 87)
( 59, 86)( 60, 85)( 61, 84)( 62, 83)( 63, 82)( 64, 81)( 65, 80)( 66, 92)
( 67,104)( 68,103)( 69,102)( 70,101)( 71,100)( 72, 99)( 73, 98)( 74, 97)
( 75, 96)( 76, 95)( 77, 94)( 78, 93);
s1 := Sym(104)!(  1, 54)(  2, 53)(  3, 65)(  4, 64)(  5, 63)(  6, 62)(  7, 61)
(  8, 60)(  9, 59)( 10, 58)( 11, 57)( 12, 56)( 13, 55)( 14, 67)( 15, 66)
( 16, 78)( 17, 77)( 18, 76)( 19, 75)( 20, 74)( 21, 73)( 22, 72)( 23, 71)
( 24, 70)( 25, 69)( 26, 68)( 27, 93)( 28, 92)( 29,104)( 30,103)( 31,102)
( 32,101)( 33,100)( 34, 99)( 35, 98)( 36, 97)( 37, 96)( 38, 95)( 39, 94)
( 40, 80)( 41, 79)( 42, 91)( 43, 90)( 44, 89)( 45, 88)( 46, 87)( 47, 86)
( 48, 85)( 49, 84)( 50, 83)( 51, 82)( 52, 81);
poly := sub<Sym(104)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope