Polytope of Type {522}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {522}*1044
Also Known As : 522-gon, {522}. if this polytope has another name.
Group : SmallGroup(1044,11)
Rank : 2
Schlafli Type : {522}
Number of vertices, edges, etc : 522, 522
Order of s0s1 : 522
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {261}*522
   3-fold quotients : {174}*348
   6-fold quotients : {87}*174
   9-fold quotients : {58}*116
   18-fold quotients : {29}*58
   29-fold quotients : {18}*36
   58-fold quotients : {9}*18
   87-fold quotients : {6}*12
   174-fold quotients : {3}*6
   261-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  4, 85)(  5, 87)(  6, 86)(  7, 82)(  8, 84)(  9, 83)( 10, 79)
( 11, 81)( 12, 80)( 13, 76)( 14, 78)( 15, 77)( 16, 73)( 17, 75)( 18, 74)
( 19, 70)( 20, 72)( 21, 71)( 22, 67)( 23, 69)( 24, 68)( 25, 64)( 26, 66)
( 27, 65)( 28, 61)( 29, 63)( 30, 62)( 31, 58)( 32, 60)( 33, 59)( 34, 55)
( 35, 57)( 36, 56)( 37, 52)( 38, 54)( 39, 53)( 40, 49)( 41, 51)( 42, 50)
( 43, 46)( 44, 48)( 45, 47)( 88,176)( 89,175)( 90,177)( 91,260)( 92,259)
( 93,261)( 94,257)( 95,256)( 96,258)( 97,254)( 98,253)( 99,255)(100,251)
(101,250)(102,252)(103,248)(104,247)(105,249)(106,245)(107,244)(108,246)
(109,242)(110,241)(111,243)(112,239)(113,238)(114,240)(115,236)(116,235)
(117,237)(118,233)(119,232)(120,234)(121,230)(122,229)(123,231)(124,227)
(125,226)(126,228)(127,224)(128,223)(129,225)(130,221)(131,220)(132,222)
(133,218)(134,217)(135,219)(136,215)(137,214)(138,216)(139,212)(140,211)
(141,213)(142,209)(143,208)(144,210)(145,206)(146,205)(147,207)(148,203)
(149,202)(150,204)(151,200)(152,199)(153,201)(154,197)(155,196)(156,198)
(157,194)(158,193)(159,195)(160,191)(161,190)(162,192)(163,188)(164,187)
(165,189)(166,185)(167,184)(168,186)(169,182)(170,181)(171,183)(172,179)
(173,178)(174,180)(263,264)(265,346)(266,348)(267,347)(268,343)(269,345)
(270,344)(271,340)(272,342)(273,341)(274,337)(275,339)(276,338)(277,334)
(278,336)(279,335)(280,331)(281,333)(282,332)(283,328)(284,330)(285,329)
(286,325)(287,327)(288,326)(289,322)(290,324)(291,323)(292,319)(293,321)
(294,320)(295,316)(296,318)(297,317)(298,313)(299,315)(300,314)(301,310)
(302,312)(303,311)(304,307)(305,309)(306,308)(349,437)(350,436)(351,438)
(352,521)(353,520)(354,522)(355,518)(356,517)(357,519)(358,515)(359,514)
(360,516)(361,512)(362,511)(363,513)(364,509)(365,508)(366,510)(367,506)
(368,505)(369,507)(370,503)(371,502)(372,504)(373,500)(374,499)(375,501)
(376,497)(377,496)(378,498)(379,494)(380,493)(381,495)(382,491)(383,490)
(384,492)(385,488)(386,487)(387,489)(388,485)(389,484)(390,486)(391,482)
(392,481)(393,483)(394,479)(395,478)(396,480)(397,476)(398,475)(399,477)
(400,473)(401,472)(402,474)(403,470)(404,469)(405,471)(406,467)(407,466)
(408,468)(409,464)(410,463)(411,465)(412,461)(413,460)(414,462)(415,458)
(416,457)(417,459)(418,455)(419,454)(420,456)(421,452)(422,451)(423,453)
(424,449)(425,448)(426,450)(427,446)(428,445)(429,447)(430,443)(431,442)
(432,444)(433,440)(434,439)(435,441);;
s1 := (  1,352)(  2,354)(  3,353)(  4,349)(  5,351)(  6,350)(  7,433)(  8,435)
(  9,434)( 10,430)( 11,432)( 12,431)( 13,427)( 14,429)( 15,428)( 16,424)
( 17,426)( 18,425)( 19,421)( 20,423)( 21,422)( 22,418)( 23,420)( 24,419)
( 25,415)( 26,417)( 27,416)( 28,412)( 29,414)( 30,413)( 31,409)( 32,411)
( 33,410)( 34,406)( 35,408)( 36,407)( 37,403)( 38,405)( 39,404)( 40,400)
( 41,402)( 42,401)( 43,397)( 44,399)( 45,398)( 46,394)( 47,396)( 48,395)
( 49,391)( 50,393)( 51,392)( 52,388)( 53,390)( 54,389)( 55,385)( 56,387)
( 57,386)( 58,382)( 59,384)( 60,383)( 61,379)( 62,381)( 63,380)( 64,376)
( 65,378)( 66,377)( 67,373)( 68,375)( 69,374)( 70,370)( 71,372)( 72,371)
( 73,367)( 74,369)( 75,368)( 76,364)( 77,366)( 78,365)( 79,361)( 80,363)
( 81,362)( 82,358)( 83,360)( 84,359)( 85,355)( 86,357)( 87,356)( 88,265)
( 89,267)( 90,266)( 91,262)( 92,264)( 93,263)( 94,346)( 95,348)( 96,347)
( 97,343)( 98,345)( 99,344)(100,340)(101,342)(102,341)(103,337)(104,339)
(105,338)(106,334)(107,336)(108,335)(109,331)(110,333)(111,332)(112,328)
(113,330)(114,329)(115,325)(116,327)(117,326)(118,322)(119,324)(120,323)
(121,319)(122,321)(123,320)(124,316)(125,318)(126,317)(127,313)(128,315)
(129,314)(130,310)(131,312)(132,311)(133,307)(134,309)(135,308)(136,304)
(137,306)(138,305)(139,301)(140,303)(141,302)(142,298)(143,300)(144,299)
(145,295)(146,297)(147,296)(148,292)(149,294)(150,293)(151,289)(152,291)
(153,290)(154,286)(155,288)(156,287)(157,283)(158,285)(159,284)(160,280)
(161,282)(162,281)(163,277)(164,279)(165,278)(166,274)(167,276)(168,275)
(169,271)(170,273)(171,272)(172,268)(173,270)(174,269)(175,440)(176,439)
(177,441)(178,437)(179,436)(180,438)(181,521)(182,520)(183,522)(184,518)
(185,517)(186,519)(187,515)(188,514)(189,516)(190,512)(191,511)(192,513)
(193,509)(194,508)(195,510)(196,506)(197,505)(198,507)(199,503)(200,502)
(201,504)(202,500)(203,499)(204,501)(205,497)(206,496)(207,498)(208,494)
(209,493)(210,495)(211,491)(212,490)(213,492)(214,488)(215,487)(216,489)
(217,485)(218,484)(219,486)(220,482)(221,481)(222,483)(223,479)(224,478)
(225,480)(226,476)(227,475)(228,477)(229,473)(230,472)(231,474)(232,470)
(233,469)(234,471)(235,467)(236,466)(237,468)(238,464)(239,463)(240,465)
(241,461)(242,460)(243,462)(244,458)(245,457)(246,459)(247,455)(248,454)
(249,456)(250,452)(251,451)(252,453)(253,449)(254,448)(255,450)(256,446)
(257,445)(258,447)(259,443)(260,442)(261,444);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(522)!(  2,  3)(  4, 85)(  5, 87)(  6, 86)(  7, 82)(  8, 84)(  9, 83)
( 10, 79)( 11, 81)( 12, 80)( 13, 76)( 14, 78)( 15, 77)( 16, 73)( 17, 75)
( 18, 74)( 19, 70)( 20, 72)( 21, 71)( 22, 67)( 23, 69)( 24, 68)( 25, 64)
( 26, 66)( 27, 65)( 28, 61)( 29, 63)( 30, 62)( 31, 58)( 32, 60)( 33, 59)
( 34, 55)( 35, 57)( 36, 56)( 37, 52)( 38, 54)( 39, 53)( 40, 49)( 41, 51)
( 42, 50)( 43, 46)( 44, 48)( 45, 47)( 88,176)( 89,175)( 90,177)( 91,260)
( 92,259)( 93,261)( 94,257)( 95,256)( 96,258)( 97,254)( 98,253)( 99,255)
(100,251)(101,250)(102,252)(103,248)(104,247)(105,249)(106,245)(107,244)
(108,246)(109,242)(110,241)(111,243)(112,239)(113,238)(114,240)(115,236)
(116,235)(117,237)(118,233)(119,232)(120,234)(121,230)(122,229)(123,231)
(124,227)(125,226)(126,228)(127,224)(128,223)(129,225)(130,221)(131,220)
(132,222)(133,218)(134,217)(135,219)(136,215)(137,214)(138,216)(139,212)
(140,211)(141,213)(142,209)(143,208)(144,210)(145,206)(146,205)(147,207)
(148,203)(149,202)(150,204)(151,200)(152,199)(153,201)(154,197)(155,196)
(156,198)(157,194)(158,193)(159,195)(160,191)(161,190)(162,192)(163,188)
(164,187)(165,189)(166,185)(167,184)(168,186)(169,182)(170,181)(171,183)
(172,179)(173,178)(174,180)(263,264)(265,346)(266,348)(267,347)(268,343)
(269,345)(270,344)(271,340)(272,342)(273,341)(274,337)(275,339)(276,338)
(277,334)(278,336)(279,335)(280,331)(281,333)(282,332)(283,328)(284,330)
(285,329)(286,325)(287,327)(288,326)(289,322)(290,324)(291,323)(292,319)
(293,321)(294,320)(295,316)(296,318)(297,317)(298,313)(299,315)(300,314)
(301,310)(302,312)(303,311)(304,307)(305,309)(306,308)(349,437)(350,436)
(351,438)(352,521)(353,520)(354,522)(355,518)(356,517)(357,519)(358,515)
(359,514)(360,516)(361,512)(362,511)(363,513)(364,509)(365,508)(366,510)
(367,506)(368,505)(369,507)(370,503)(371,502)(372,504)(373,500)(374,499)
(375,501)(376,497)(377,496)(378,498)(379,494)(380,493)(381,495)(382,491)
(383,490)(384,492)(385,488)(386,487)(387,489)(388,485)(389,484)(390,486)
(391,482)(392,481)(393,483)(394,479)(395,478)(396,480)(397,476)(398,475)
(399,477)(400,473)(401,472)(402,474)(403,470)(404,469)(405,471)(406,467)
(407,466)(408,468)(409,464)(410,463)(411,465)(412,461)(413,460)(414,462)
(415,458)(416,457)(417,459)(418,455)(419,454)(420,456)(421,452)(422,451)
(423,453)(424,449)(425,448)(426,450)(427,446)(428,445)(429,447)(430,443)
(431,442)(432,444)(433,440)(434,439)(435,441);
s1 := Sym(522)!(  1,352)(  2,354)(  3,353)(  4,349)(  5,351)(  6,350)(  7,433)
(  8,435)(  9,434)( 10,430)( 11,432)( 12,431)( 13,427)( 14,429)( 15,428)
( 16,424)( 17,426)( 18,425)( 19,421)( 20,423)( 21,422)( 22,418)( 23,420)
( 24,419)( 25,415)( 26,417)( 27,416)( 28,412)( 29,414)( 30,413)( 31,409)
( 32,411)( 33,410)( 34,406)( 35,408)( 36,407)( 37,403)( 38,405)( 39,404)
( 40,400)( 41,402)( 42,401)( 43,397)( 44,399)( 45,398)( 46,394)( 47,396)
( 48,395)( 49,391)( 50,393)( 51,392)( 52,388)( 53,390)( 54,389)( 55,385)
( 56,387)( 57,386)( 58,382)( 59,384)( 60,383)( 61,379)( 62,381)( 63,380)
( 64,376)( 65,378)( 66,377)( 67,373)( 68,375)( 69,374)( 70,370)( 71,372)
( 72,371)( 73,367)( 74,369)( 75,368)( 76,364)( 77,366)( 78,365)( 79,361)
( 80,363)( 81,362)( 82,358)( 83,360)( 84,359)( 85,355)( 86,357)( 87,356)
( 88,265)( 89,267)( 90,266)( 91,262)( 92,264)( 93,263)( 94,346)( 95,348)
( 96,347)( 97,343)( 98,345)( 99,344)(100,340)(101,342)(102,341)(103,337)
(104,339)(105,338)(106,334)(107,336)(108,335)(109,331)(110,333)(111,332)
(112,328)(113,330)(114,329)(115,325)(116,327)(117,326)(118,322)(119,324)
(120,323)(121,319)(122,321)(123,320)(124,316)(125,318)(126,317)(127,313)
(128,315)(129,314)(130,310)(131,312)(132,311)(133,307)(134,309)(135,308)
(136,304)(137,306)(138,305)(139,301)(140,303)(141,302)(142,298)(143,300)
(144,299)(145,295)(146,297)(147,296)(148,292)(149,294)(150,293)(151,289)
(152,291)(153,290)(154,286)(155,288)(156,287)(157,283)(158,285)(159,284)
(160,280)(161,282)(162,281)(163,277)(164,279)(165,278)(166,274)(167,276)
(168,275)(169,271)(170,273)(171,272)(172,268)(173,270)(174,269)(175,440)
(176,439)(177,441)(178,437)(179,436)(180,438)(181,521)(182,520)(183,522)
(184,518)(185,517)(186,519)(187,515)(188,514)(189,516)(190,512)(191,511)
(192,513)(193,509)(194,508)(195,510)(196,506)(197,505)(198,507)(199,503)
(200,502)(201,504)(202,500)(203,499)(204,501)(205,497)(206,496)(207,498)
(208,494)(209,493)(210,495)(211,491)(212,490)(213,492)(214,488)(215,487)
(216,489)(217,485)(218,484)(219,486)(220,482)(221,481)(222,483)(223,479)
(224,478)(225,480)(226,476)(227,475)(228,477)(229,473)(230,472)(231,474)
(232,470)(233,469)(234,471)(235,467)(236,466)(237,468)(238,464)(239,463)
(240,465)(241,461)(242,460)(243,462)(244,458)(245,457)(246,459)(247,455)
(248,454)(249,456)(250,452)(251,451)(252,453)(253,449)(254,448)(255,450)
(256,446)(257,445)(258,447)(259,443)(260,442)(261,444);
poly := sub<Sym(522)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope