include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {29}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {29}*58
Also Known As : 29-gon, {29}. if this polytope has another name.
Group : SmallGroup(58,1)
Rank : 2
Schlafli Type : {29}
Number of vertices, edges, etc : 29, 29
Order of s0s1 : 29
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{29,2} of size 116
Vertex Figure Of :
{2,29} of size 116
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {58}*116
3-fold covers : {87}*174
4-fold covers : {116}*232
5-fold covers : {145}*290
6-fold covers : {174}*348
7-fold covers : {203}*406
8-fold covers : {232}*464
9-fold covers : {261}*522
10-fold covers : {290}*580
11-fold covers : {319}*638
12-fold covers : {348}*696
13-fold covers : {377}*754
14-fold covers : {406}*812
15-fold covers : {435}*870
16-fold covers : {464}*928
17-fold covers : {493}*986
18-fold covers : {522}*1044
19-fold covers : {551}*1102
20-fold covers : {580}*1160
21-fold covers : {609}*1218
22-fold covers : {638}*1276
23-fold covers : {667}*1334
24-fold covers : {696}*1392
25-fold covers : {725}*1450
26-fold covers : {754}*1508
27-fold covers : {783}*1566
28-fold covers : {812}*1624
29-fold covers : {841}*1682
30-fold covers : {870}*1740
31-fold covers : {899}*1798
32-fold covers : {928}*1856
33-fold covers : {957}*1914
34-fold covers : {986}*1972
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)
(22,23)(24,25)(26,27)(28,29);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26)(27,28);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(29)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)
(20,21)(22,23)(24,25)(26,27)(28,29);
s1 := Sym(29)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)
(19,20)(21,22)(23,24)(25,26)(27,28);
poly := sub<Sym(29)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope