Polytope of Type {532}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {532}*1064
Also Known As : 532-gon, {532}. if this polytope has another name.
Group : SmallGroup(1064,24)
Rank : 2
Schlafli Type : {532}
Number of vertices, edges, etc : 532, 532
Order of s0s1 : 532
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {266}*532
   4-fold quotients : {133}*266
   7-fold quotients : {76}*152
   14-fold quotients : {38}*76
   19-fold quotients : {28}*56
   28-fold quotients : {19}*38
   38-fold quotients : {14}*28
   76-fold quotients : {7}*14
   133-fold quotients : {4}*8
   266-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 19)(  3, 18)(  4, 17)(  5, 16)(  6, 15)(  7, 14)(  8, 13)(  9, 12)
( 10, 11)( 20,115)( 21,133)( 22,132)( 23,131)( 24,130)( 25,129)( 26,128)
( 27,127)( 28,126)( 29,125)( 30,124)( 31,123)( 32,122)( 33,121)( 34,120)
( 35,119)( 36,118)( 37,117)( 38,116)( 39, 96)( 40,114)( 41,113)( 42,112)
( 43,111)( 44,110)( 45,109)( 46,108)( 47,107)( 48,106)( 49,105)( 50,104)
( 51,103)( 52,102)( 53,101)( 54,100)( 55, 99)( 56, 98)( 57, 97)( 58, 77)
( 59, 95)( 60, 94)( 61, 93)( 62, 92)( 63, 91)( 64, 90)( 65, 89)( 66, 88)
( 67, 87)( 68, 86)( 69, 85)( 70, 84)( 71, 83)( 72, 82)( 73, 81)( 74, 80)
( 75, 79)( 76, 78)(135,152)(136,151)(137,150)(138,149)(139,148)(140,147)
(141,146)(142,145)(143,144)(153,248)(154,266)(155,265)(156,264)(157,263)
(158,262)(159,261)(160,260)(161,259)(162,258)(163,257)(164,256)(165,255)
(166,254)(167,253)(168,252)(169,251)(170,250)(171,249)(172,229)(173,247)
(174,246)(175,245)(176,244)(177,243)(178,242)(179,241)(180,240)(181,239)
(182,238)(183,237)(184,236)(185,235)(186,234)(187,233)(188,232)(189,231)
(190,230)(191,210)(192,228)(193,227)(194,226)(195,225)(196,224)(197,223)
(198,222)(199,221)(200,220)(201,219)(202,218)(203,217)(204,216)(205,215)
(206,214)(207,213)(208,212)(209,211)(267,400)(268,418)(269,417)(270,416)
(271,415)(272,414)(273,413)(274,412)(275,411)(276,410)(277,409)(278,408)
(279,407)(280,406)(281,405)(282,404)(283,403)(284,402)(285,401)(286,514)
(287,532)(288,531)(289,530)(290,529)(291,528)(292,527)(293,526)(294,525)
(295,524)(296,523)(297,522)(298,521)(299,520)(300,519)(301,518)(302,517)
(303,516)(304,515)(305,495)(306,513)(307,512)(308,511)(309,510)(310,509)
(311,508)(312,507)(313,506)(314,505)(315,504)(316,503)(317,502)(318,501)
(319,500)(320,499)(321,498)(322,497)(323,496)(324,476)(325,494)(326,493)
(327,492)(328,491)(329,490)(330,489)(331,488)(332,487)(333,486)(334,485)
(335,484)(336,483)(337,482)(338,481)(339,480)(340,479)(341,478)(342,477)
(343,457)(344,475)(345,474)(346,473)(347,472)(348,471)(349,470)(350,469)
(351,468)(352,467)(353,466)(354,465)(355,464)(356,463)(357,462)(358,461)
(359,460)(360,459)(361,458)(362,438)(363,456)(364,455)(365,454)(366,453)
(367,452)(368,451)(369,450)(370,449)(371,448)(372,447)(373,446)(374,445)
(375,444)(376,443)(377,442)(378,441)(379,440)(380,439)(381,419)(382,437)
(383,436)(384,435)(385,434)(386,433)(387,432)(388,431)(389,430)(390,429)
(391,428)(392,427)(393,426)(394,425)(395,424)(396,423)(397,422)(398,421)
(399,420);;
s1 := (  1,287)(  2,286)(  3,304)(  4,303)(  5,302)(  6,301)(  7,300)(  8,299)
(  9,298)( 10,297)( 11,296)( 12,295)( 13,294)( 14,293)( 15,292)( 16,291)
( 17,290)( 18,289)( 19,288)( 20,268)( 21,267)( 22,285)( 23,284)( 24,283)
( 25,282)( 26,281)( 27,280)( 28,279)( 29,278)( 30,277)( 31,276)( 32,275)
( 33,274)( 34,273)( 35,272)( 36,271)( 37,270)( 38,269)( 39,382)( 40,381)
( 41,399)( 42,398)( 43,397)( 44,396)( 45,395)( 46,394)( 47,393)( 48,392)
( 49,391)( 50,390)( 51,389)( 52,388)( 53,387)( 54,386)( 55,385)( 56,384)
( 57,383)( 58,363)( 59,362)( 60,380)( 61,379)( 62,378)( 63,377)( 64,376)
( 65,375)( 66,374)( 67,373)( 68,372)( 69,371)( 70,370)( 71,369)( 72,368)
( 73,367)( 74,366)( 75,365)( 76,364)( 77,344)( 78,343)( 79,361)( 80,360)
( 81,359)( 82,358)( 83,357)( 84,356)( 85,355)( 86,354)( 87,353)( 88,352)
( 89,351)( 90,350)( 91,349)( 92,348)( 93,347)( 94,346)( 95,345)( 96,325)
( 97,324)( 98,342)( 99,341)(100,340)(101,339)(102,338)(103,337)(104,336)
(105,335)(106,334)(107,333)(108,332)(109,331)(110,330)(111,329)(112,328)
(113,327)(114,326)(115,306)(116,305)(117,323)(118,322)(119,321)(120,320)
(121,319)(122,318)(123,317)(124,316)(125,315)(126,314)(127,313)(128,312)
(129,311)(130,310)(131,309)(132,308)(133,307)(134,420)(135,419)(136,437)
(137,436)(138,435)(139,434)(140,433)(141,432)(142,431)(143,430)(144,429)
(145,428)(146,427)(147,426)(148,425)(149,424)(150,423)(151,422)(152,421)
(153,401)(154,400)(155,418)(156,417)(157,416)(158,415)(159,414)(160,413)
(161,412)(162,411)(163,410)(164,409)(165,408)(166,407)(167,406)(168,405)
(169,404)(170,403)(171,402)(172,515)(173,514)(174,532)(175,531)(176,530)
(177,529)(178,528)(179,527)(180,526)(181,525)(182,524)(183,523)(184,522)
(185,521)(186,520)(187,519)(188,518)(189,517)(190,516)(191,496)(192,495)
(193,513)(194,512)(195,511)(196,510)(197,509)(198,508)(199,507)(200,506)
(201,505)(202,504)(203,503)(204,502)(205,501)(206,500)(207,499)(208,498)
(209,497)(210,477)(211,476)(212,494)(213,493)(214,492)(215,491)(216,490)
(217,489)(218,488)(219,487)(220,486)(221,485)(222,484)(223,483)(224,482)
(225,481)(226,480)(227,479)(228,478)(229,458)(230,457)(231,475)(232,474)
(233,473)(234,472)(235,471)(236,470)(237,469)(238,468)(239,467)(240,466)
(241,465)(242,464)(243,463)(244,462)(245,461)(246,460)(247,459)(248,439)
(249,438)(250,456)(251,455)(252,454)(253,453)(254,452)(255,451)(256,450)
(257,449)(258,448)(259,447)(260,446)(261,445)(262,444)(263,443)(264,442)
(265,441)(266,440);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(532)!(  2, 19)(  3, 18)(  4, 17)(  5, 16)(  6, 15)(  7, 14)(  8, 13)
(  9, 12)( 10, 11)( 20,115)( 21,133)( 22,132)( 23,131)( 24,130)( 25,129)
( 26,128)( 27,127)( 28,126)( 29,125)( 30,124)( 31,123)( 32,122)( 33,121)
( 34,120)( 35,119)( 36,118)( 37,117)( 38,116)( 39, 96)( 40,114)( 41,113)
( 42,112)( 43,111)( 44,110)( 45,109)( 46,108)( 47,107)( 48,106)( 49,105)
( 50,104)( 51,103)( 52,102)( 53,101)( 54,100)( 55, 99)( 56, 98)( 57, 97)
( 58, 77)( 59, 95)( 60, 94)( 61, 93)( 62, 92)( 63, 91)( 64, 90)( 65, 89)
( 66, 88)( 67, 87)( 68, 86)( 69, 85)( 70, 84)( 71, 83)( 72, 82)( 73, 81)
( 74, 80)( 75, 79)( 76, 78)(135,152)(136,151)(137,150)(138,149)(139,148)
(140,147)(141,146)(142,145)(143,144)(153,248)(154,266)(155,265)(156,264)
(157,263)(158,262)(159,261)(160,260)(161,259)(162,258)(163,257)(164,256)
(165,255)(166,254)(167,253)(168,252)(169,251)(170,250)(171,249)(172,229)
(173,247)(174,246)(175,245)(176,244)(177,243)(178,242)(179,241)(180,240)
(181,239)(182,238)(183,237)(184,236)(185,235)(186,234)(187,233)(188,232)
(189,231)(190,230)(191,210)(192,228)(193,227)(194,226)(195,225)(196,224)
(197,223)(198,222)(199,221)(200,220)(201,219)(202,218)(203,217)(204,216)
(205,215)(206,214)(207,213)(208,212)(209,211)(267,400)(268,418)(269,417)
(270,416)(271,415)(272,414)(273,413)(274,412)(275,411)(276,410)(277,409)
(278,408)(279,407)(280,406)(281,405)(282,404)(283,403)(284,402)(285,401)
(286,514)(287,532)(288,531)(289,530)(290,529)(291,528)(292,527)(293,526)
(294,525)(295,524)(296,523)(297,522)(298,521)(299,520)(300,519)(301,518)
(302,517)(303,516)(304,515)(305,495)(306,513)(307,512)(308,511)(309,510)
(310,509)(311,508)(312,507)(313,506)(314,505)(315,504)(316,503)(317,502)
(318,501)(319,500)(320,499)(321,498)(322,497)(323,496)(324,476)(325,494)
(326,493)(327,492)(328,491)(329,490)(330,489)(331,488)(332,487)(333,486)
(334,485)(335,484)(336,483)(337,482)(338,481)(339,480)(340,479)(341,478)
(342,477)(343,457)(344,475)(345,474)(346,473)(347,472)(348,471)(349,470)
(350,469)(351,468)(352,467)(353,466)(354,465)(355,464)(356,463)(357,462)
(358,461)(359,460)(360,459)(361,458)(362,438)(363,456)(364,455)(365,454)
(366,453)(367,452)(368,451)(369,450)(370,449)(371,448)(372,447)(373,446)
(374,445)(375,444)(376,443)(377,442)(378,441)(379,440)(380,439)(381,419)
(382,437)(383,436)(384,435)(385,434)(386,433)(387,432)(388,431)(389,430)
(390,429)(391,428)(392,427)(393,426)(394,425)(395,424)(396,423)(397,422)
(398,421)(399,420);
s1 := Sym(532)!(  1,287)(  2,286)(  3,304)(  4,303)(  5,302)(  6,301)(  7,300)
(  8,299)(  9,298)( 10,297)( 11,296)( 12,295)( 13,294)( 14,293)( 15,292)
( 16,291)( 17,290)( 18,289)( 19,288)( 20,268)( 21,267)( 22,285)( 23,284)
( 24,283)( 25,282)( 26,281)( 27,280)( 28,279)( 29,278)( 30,277)( 31,276)
( 32,275)( 33,274)( 34,273)( 35,272)( 36,271)( 37,270)( 38,269)( 39,382)
( 40,381)( 41,399)( 42,398)( 43,397)( 44,396)( 45,395)( 46,394)( 47,393)
( 48,392)( 49,391)( 50,390)( 51,389)( 52,388)( 53,387)( 54,386)( 55,385)
( 56,384)( 57,383)( 58,363)( 59,362)( 60,380)( 61,379)( 62,378)( 63,377)
( 64,376)( 65,375)( 66,374)( 67,373)( 68,372)( 69,371)( 70,370)( 71,369)
( 72,368)( 73,367)( 74,366)( 75,365)( 76,364)( 77,344)( 78,343)( 79,361)
( 80,360)( 81,359)( 82,358)( 83,357)( 84,356)( 85,355)( 86,354)( 87,353)
( 88,352)( 89,351)( 90,350)( 91,349)( 92,348)( 93,347)( 94,346)( 95,345)
( 96,325)( 97,324)( 98,342)( 99,341)(100,340)(101,339)(102,338)(103,337)
(104,336)(105,335)(106,334)(107,333)(108,332)(109,331)(110,330)(111,329)
(112,328)(113,327)(114,326)(115,306)(116,305)(117,323)(118,322)(119,321)
(120,320)(121,319)(122,318)(123,317)(124,316)(125,315)(126,314)(127,313)
(128,312)(129,311)(130,310)(131,309)(132,308)(133,307)(134,420)(135,419)
(136,437)(137,436)(138,435)(139,434)(140,433)(141,432)(142,431)(143,430)
(144,429)(145,428)(146,427)(147,426)(148,425)(149,424)(150,423)(151,422)
(152,421)(153,401)(154,400)(155,418)(156,417)(157,416)(158,415)(159,414)
(160,413)(161,412)(162,411)(163,410)(164,409)(165,408)(166,407)(167,406)
(168,405)(169,404)(170,403)(171,402)(172,515)(173,514)(174,532)(175,531)
(176,530)(177,529)(178,528)(179,527)(180,526)(181,525)(182,524)(183,523)
(184,522)(185,521)(186,520)(187,519)(188,518)(189,517)(190,516)(191,496)
(192,495)(193,513)(194,512)(195,511)(196,510)(197,509)(198,508)(199,507)
(200,506)(201,505)(202,504)(203,503)(204,502)(205,501)(206,500)(207,499)
(208,498)(209,497)(210,477)(211,476)(212,494)(213,493)(214,492)(215,491)
(216,490)(217,489)(218,488)(219,487)(220,486)(221,485)(222,484)(223,483)
(224,482)(225,481)(226,480)(227,479)(228,478)(229,458)(230,457)(231,475)
(232,474)(233,473)(234,472)(235,471)(236,470)(237,469)(238,468)(239,467)
(240,466)(241,465)(242,464)(243,463)(244,462)(245,461)(246,460)(247,459)
(248,439)(249,438)(250,456)(251,455)(252,454)(253,453)(254,452)(255,451)
(256,450)(257,449)(258,448)(259,447)(260,446)(261,445)(262,444)(263,443)
(264,442)(265,441)(266,440);
poly := sub<Sym(532)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope