include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {546}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {546}*1092
Also Known As : 546-gon, {546}. if this polytope has another name.
Group : SmallGroup(1092,76)
Rank : 2
Schlafli Type : {546}
Number of vertices, edges, etc : 546, 546
Order of s0s1 : 546
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {273}*546
3-fold quotients : {182}*364
6-fold quotients : {91}*182
7-fold quotients : {78}*156
13-fold quotients : {42}*84
14-fold quotients : {39}*78
21-fold quotients : {26}*52
26-fold quotients : {21}*42
39-fold quotients : {14}*28
42-fold quotients : {13}*26
78-fold quotients : {7}*14
91-fold quotients : {6}*12
182-fold quotients : {3}*6
273-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 13)( 3, 12)( 4, 11)( 5, 10)( 6, 9)( 7, 8)( 14, 79)( 15, 91)
( 16, 90)( 17, 89)( 18, 88)( 19, 87)( 20, 86)( 21, 85)( 22, 84)( 23, 83)
( 24, 82)( 25, 81)( 26, 80)( 27, 66)( 28, 78)( 29, 77)( 30, 76)( 31, 75)
( 32, 74)( 33, 73)( 34, 72)( 35, 71)( 36, 70)( 37, 69)( 38, 68)( 39, 67)
( 40, 53)( 41, 65)( 42, 64)( 43, 63)( 44, 62)( 45, 61)( 46, 60)( 47, 59)
( 48, 58)( 49, 57)( 50, 56)( 51, 55)( 52, 54)( 92,183)( 93,195)( 94,194)
( 95,193)( 96,192)( 97,191)( 98,190)( 99,189)(100,188)(101,187)(102,186)
(103,185)(104,184)(105,261)(106,273)(107,272)(108,271)(109,270)(110,269)
(111,268)(112,267)(113,266)(114,265)(115,264)(116,263)(117,262)(118,248)
(119,260)(120,259)(121,258)(122,257)(123,256)(124,255)(125,254)(126,253)
(127,252)(128,251)(129,250)(130,249)(131,235)(132,247)(133,246)(134,245)
(135,244)(136,243)(137,242)(138,241)(139,240)(140,239)(141,238)(142,237)
(143,236)(144,222)(145,234)(146,233)(147,232)(148,231)(149,230)(150,229)
(151,228)(152,227)(153,226)(154,225)(155,224)(156,223)(157,209)(158,221)
(159,220)(160,219)(161,218)(162,217)(163,216)(164,215)(165,214)(166,213)
(167,212)(168,211)(169,210)(170,196)(171,208)(172,207)(173,206)(174,205)
(175,204)(176,203)(177,202)(178,201)(179,200)(180,199)(181,198)(182,197)
(275,286)(276,285)(277,284)(278,283)(279,282)(280,281)(287,352)(288,364)
(289,363)(290,362)(291,361)(292,360)(293,359)(294,358)(295,357)(296,356)
(297,355)(298,354)(299,353)(300,339)(301,351)(302,350)(303,349)(304,348)
(305,347)(306,346)(307,345)(308,344)(309,343)(310,342)(311,341)(312,340)
(313,326)(314,338)(315,337)(316,336)(317,335)(318,334)(319,333)(320,332)
(321,331)(322,330)(323,329)(324,328)(325,327)(365,456)(366,468)(367,467)
(368,466)(369,465)(370,464)(371,463)(372,462)(373,461)(374,460)(375,459)
(376,458)(377,457)(378,534)(379,546)(380,545)(381,544)(382,543)(383,542)
(384,541)(385,540)(386,539)(387,538)(388,537)(389,536)(390,535)(391,521)
(392,533)(393,532)(394,531)(395,530)(396,529)(397,528)(398,527)(399,526)
(400,525)(401,524)(402,523)(403,522)(404,508)(405,520)(406,519)(407,518)
(408,517)(409,516)(410,515)(411,514)(412,513)(413,512)(414,511)(415,510)
(416,509)(417,495)(418,507)(419,506)(420,505)(421,504)(422,503)(423,502)
(424,501)(425,500)(426,499)(427,498)(428,497)(429,496)(430,482)(431,494)
(432,493)(433,492)(434,491)(435,490)(436,489)(437,488)(438,487)(439,486)
(440,485)(441,484)(442,483)(443,469)(444,481)(445,480)(446,479)(447,478)
(448,477)(449,476)(450,475)(451,474)(452,473)(453,472)(454,471)(455,470);;
s1 := ( 1,379)( 2,378)( 3,390)( 4,389)( 5,388)( 6,387)( 7,386)( 8,385)
( 9,384)( 10,383)( 11,382)( 12,381)( 13,380)( 14,366)( 15,365)( 16,377)
( 17,376)( 18,375)( 19,374)( 20,373)( 21,372)( 22,371)( 23,370)( 24,369)
( 25,368)( 26,367)( 27,444)( 28,443)( 29,455)( 30,454)( 31,453)( 32,452)
( 33,451)( 34,450)( 35,449)( 36,448)( 37,447)( 38,446)( 39,445)( 40,431)
( 41,430)( 42,442)( 43,441)( 44,440)( 45,439)( 46,438)( 47,437)( 48,436)
( 49,435)( 50,434)( 51,433)( 52,432)( 53,418)( 54,417)( 55,429)( 56,428)
( 57,427)( 58,426)( 59,425)( 60,424)( 61,423)( 62,422)( 63,421)( 64,420)
( 65,419)( 66,405)( 67,404)( 68,416)( 69,415)( 70,414)( 71,413)( 72,412)
( 73,411)( 74,410)( 75,409)( 76,408)( 77,407)( 78,406)( 79,392)( 80,391)
( 81,403)( 82,402)( 83,401)( 84,400)( 85,399)( 86,398)( 87,397)( 88,396)
( 89,395)( 90,394)( 91,393)( 92,288)( 93,287)( 94,299)( 95,298)( 96,297)
( 97,296)( 98,295)( 99,294)(100,293)(101,292)(102,291)(103,290)(104,289)
(105,275)(106,274)(107,286)(108,285)(109,284)(110,283)(111,282)(112,281)
(113,280)(114,279)(115,278)(116,277)(117,276)(118,353)(119,352)(120,364)
(121,363)(122,362)(123,361)(124,360)(125,359)(126,358)(127,357)(128,356)
(129,355)(130,354)(131,340)(132,339)(133,351)(134,350)(135,349)(136,348)
(137,347)(138,346)(139,345)(140,344)(141,343)(142,342)(143,341)(144,327)
(145,326)(146,338)(147,337)(148,336)(149,335)(150,334)(151,333)(152,332)
(153,331)(154,330)(155,329)(156,328)(157,314)(158,313)(159,325)(160,324)
(161,323)(162,322)(163,321)(164,320)(165,319)(166,318)(167,317)(168,316)
(169,315)(170,301)(171,300)(172,312)(173,311)(174,310)(175,309)(176,308)
(177,307)(178,306)(179,305)(180,304)(181,303)(182,302)(183,470)(184,469)
(185,481)(186,480)(187,479)(188,478)(189,477)(190,476)(191,475)(192,474)
(193,473)(194,472)(195,471)(196,457)(197,456)(198,468)(199,467)(200,466)
(201,465)(202,464)(203,463)(204,462)(205,461)(206,460)(207,459)(208,458)
(209,535)(210,534)(211,546)(212,545)(213,544)(214,543)(215,542)(216,541)
(217,540)(218,539)(219,538)(220,537)(221,536)(222,522)(223,521)(224,533)
(225,532)(226,531)(227,530)(228,529)(229,528)(230,527)(231,526)(232,525)
(233,524)(234,523)(235,509)(236,508)(237,520)(238,519)(239,518)(240,517)
(241,516)(242,515)(243,514)(244,513)(245,512)(246,511)(247,510)(248,496)
(249,495)(250,507)(251,506)(252,505)(253,504)(254,503)(255,502)(256,501)
(257,500)(258,499)(259,498)(260,497)(261,483)(262,482)(263,494)(264,493)
(265,492)(266,491)(267,490)(268,489)(269,488)(270,487)(271,486)(272,485)
(273,484);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(546)!( 2, 13)( 3, 12)( 4, 11)( 5, 10)( 6, 9)( 7, 8)( 14, 79)
( 15, 91)( 16, 90)( 17, 89)( 18, 88)( 19, 87)( 20, 86)( 21, 85)( 22, 84)
( 23, 83)( 24, 82)( 25, 81)( 26, 80)( 27, 66)( 28, 78)( 29, 77)( 30, 76)
( 31, 75)( 32, 74)( 33, 73)( 34, 72)( 35, 71)( 36, 70)( 37, 69)( 38, 68)
( 39, 67)( 40, 53)( 41, 65)( 42, 64)( 43, 63)( 44, 62)( 45, 61)( 46, 60)
( 47, 59)( 48, 58)( 49, 57)( 50, 56)( 51, 55)( 52, 54)( 92,183)( 93,195)
( 94,194)( 95,193)( 96,192)( 97,191)( 98,190)( 99,189)(100,188)(101,187)
(102,186)(103,185)(104,184)(105,261)(106,273)(107,272)(108,271)(109,270)
(110,269)(111,268)(112,267)(113,266)(114,265)(115,264)(116,263)(117,262)
(118,248)(119,260)(120,259)(121,258)(122,257)(123,256)(124,255)(125,254)
(126,253)(127,252)(128,251)(129,250)(130,249)(131,235)(132,247)(133,246)
(134,245)(135,244)(136,243)(137,242)(138,241)(139,240)(140,239)(141,238)
(142,237)(143,236)(144,222)(145,234)(146,233)(147,232)(148,231)(149,230)
(150,229)(151,228)(152,227)(153,226)(154,225)(155,224)(156,223)(157,209)
(158,221)(159,220)(160,219)(161,218)(162,217)(163,216)(164,215)(165,214)
(166,213)(167,212)(168,211)(169,210)(170,196)(171,208)(172,207)(173,206)
(174,205)(175,204)(176,203)(177,202)(178,201)(179,200)(180,199)(181,198)
(182,197)(275,286)(276,285)(277,284)(278,283)(279,282)(280,281)(287,352)
(288,364)(289,363)(290,362)(291,361)(292,360)(293,359)(294,358)(295,357)
(296,356)(297,355)(298,354)(299,353)(300,339)(301,351)(302,350)(303,349)
(304,348)(305,347)(306,346)(307,345)(308,344)(309,343)(310,342)(311,341)
(312,340)(313,326)(314,338)(315,337)(316,336)(317,335)(318,334)(319,333)
(320,332)(321,331)(322,330)(323,329)(324,328)(325,327)(365,456)(366,468)
(367,467)(368,466)(369,465)(370,464)(371,463)(372,462)(373,461)(374,460)
(375,459)(376,458)(377,457)(378,534)(379,546)(380,545)(381,544)(382,543)
(383,542)(384,541)(385,540)(386,539)(387,538)(388,537)(389,536)(390,535)
(391,521)(392,533)(393,532)(394,531)(395,530)(396,529)(397,528)(398,527)
(399,526)(400,525)(401,524)(402,523)(403,522)(404,508)(405,520)(406,519)
(407,518)(408,517)(409,516)(410,515)(411,514)(412,513)(413,512)(414,511)
(415,510)(416,509)(417,495)(418,507)(419,506)(420,505)(421,504)(422,503)
(423,502)(424,501)(425,500)(426,499)(427,498)(428,497)(429,496)(430,482)
(431,494)(432,493)(433,492)(434,491)(435,490)(436,489)(437,488)(438,487)
(439,486)(440,485)(441,484)(442,483)(443,469)(444,481)(445,480)(446,479)
(447,478)(448,477)(449,476)(450,475)(451,474)(452,473)(453,472)(454,471)
(455,470);
s1 := Sym(546)!( 1,379)( 2,378)( 3,390)( 4,389)( 5,388)( 6,387)( 7,386)
( 8,385)( 9,384)( 10,383)( 11,382)( 12,381)( 13,380)( 14,366)( 15,365)
( 16,377)( 17,376)( 18,375)( 19,374)( 20,373)( 21,372)( 22,371)( 23,370)
( 24,369)( 25,368)( 26,367)( 27,444)( 28,443)( 29,455)( 30,454)( 31,453)
( 32,452)( 33,451)( 34,450)( 35,449)( 36,448)( 37,447)( 38,446)( 39,445)
( 40,431)( 41,430)( 42,442)( 43,441)( 44,440)( 45,439)( 46,438)( 47,437)
( 48,436)( 49,435)( 50,434)( 51,433)( 52,432)( 53,418)( 54,417)( 55,429)
( 56,428)( 57,427)( 58,426)( 59,425)( 60,424)( 61,423)( 62,422)( 63,421)
( 64,420)( 65,419)( 66,405)( 67,404)( 68,416)( 69,415)( 70,414)( 71,413)
( 72,412)( 73,411)( 74,410)( 75,409)( 76,408)( 77,407)( 78,406)( 79,392)
( 80,391)( 81,403)( 82,402)( 83,401)( 84,400)( 85,399)( 86,398)( 87,397)
( 88,396)( 89,395)( 90,394)( 91,393)( 92,288)( 93,287)( 94,299)( 95,298)
( 96,297)( 97,296)( 98,295)( 99,294)(100,293)(101,292)(102,291)(103,290)
(104,289)(105,275)(106,274)(107,286)(108,285)(109,284)(110,283)(111,282)
(112,281)(113,280)(114,279)(115,278)(116,277)(117,276)(118,353)(119,352)
(120,364)(121,363)(122,362)(123,361)(124,360)(125,359)(126,358)(127,357)
(128,356)(129,355)(130,354)(131,340)(132,339)(133,351)(134,350)(135,349)
(136,348)(137,347)(138,346)(139,345)(140,344)(141,343)(142,342)(143,341)
(144,327)(145,326)(146,338)(147,337)(148,336)(149,335)(150,334)(151,333)
(152,332)(153,331)(154,330)(155,329)(156,328)(157,314)(158,313)(159,325)
(160,324)(161,323)(162,322)(163,321)(164,320)(165,319)(166,318)(167,317)
(168,316)(169,315)(170,301)(171,300)(172,312)(173,311)(174,310)(175,309)
(176,308)(177,307)(178,306)(179,305)(180,304)(181,303)(182,302)(183,470)
(184,469)(185,481)(186,480)(187,479)(188,478)(189,477)(190,476)(191,475)
(192,474)(193,473)(194,472)(195,471)(196,457)(197,456)(198,468)(199,467)
(200,466)(201,465)(202,464)(203,463)(204,462)(205,461)(206,460)(207,459)
(208,458)(209,535)(210,534)(211,546)(212,545)(213,544)(214,543)(215,542)
(216,541)(217,540)(218,539)(219,538)(220,537)(221,536)(222,522)(223,521)
(224,533)(225,532)(226,531)(227,530)(228,529)(229,528)(230,527)(231,526)
(232,525)(233,524)(234,523)(235,509)(236,508)(237,520)(238,519)(239,518)
(240,517)(241,516)(242,515)(243,514)(244,513)(245,512)(246,511)(247,510)
(248,496)(249,495)(250,507)(251,506)(252,505)(253,504)(254,503)(255,502)
(256,501)(257,500)(258,499)(259,498)(260,497)(261,483)(262,482)(263,494)
(264,493)(265,492)(266,491)(267,490)(268,489)(269,488)(270,487)(271,486)
(272,485)(273,484);
poly := sub<Sym(546)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope