Polytope of Type {2,2,40,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,40,4}*1280b
if this polytope has a name.
Group : SmallGroup(1280,1036172)
Rank : 5
Schlafli Type : {2,2,40,4}
Number of vertices, edges, etc : 2, 2, 40, 80, 4
Order of s0s1s2s3s4 : 40
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,20,4}*640
   4-fold quotients : {2,2,20,2}*320, {2,2,10,4}*320
   5-fold quotients : {2,2,8,4}*256b
   8-fold quotients : {2,2,10,2}*160
   10-fold quotients : {2,2,4,4}*128
   16-fold quotients : {2,2,5,2}*80
   20-fold quotients : {2,2,2,4}*64, {2,2,4,2}*64
   40-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 9)( 7, 8)(11,14)(12,13)(15,20)(16,24)(17,23)(18,22)(19,21)(26,29)
(27,28)(31,34)(32,33)(35,40)(36,44)(37,43)(38,42)(39,41)(45,80)(46,84)(47,83)
(48,82)(49,81)(50,75)(51,79)(52,78)(53,77)(54,76)(55,65)(56,69)(57,68)(58,67)
(59,66)(60,70)(61,74)(62,73)(63,72)(64,71);;
s3 := ( 5,46)( 6,45)( 7,49)( 8,48)( 9,47)(10,51)(11,50)(12,54)(13,53)(14,52)
(15,56)(16,55)(17,59)(18,58)(19,57)(20,61)(21,60)(22,64)(23,63)(24,62)(25,71)
(26,70)(27,74)(28,73)(29,72)(30,66)(31,65)(32,69)(33,68)(34,67)(35,81)(36,80)
(37,84)(38,83)(39,82)(40,76)(41,75)(42,79)(43,78)(44,77);;
s4 := (25,30)(26,31)(27,32)(28,33)(29,34)(35,40)(36,41)(37,42)(38,43)(39,44)
(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)(65,80)
(66,81)(67,82)(68,83)(69,84)(70,75)(71,76)(72,77)(73,78)(74,79);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s4*s3*s4*s3*s2*s3*s2*s4*s3*s4*s3*s2*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s4*s3*s2*s3*s2*s4*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(84)!(1,2);
s1 := Sym(84)!(3,4);
s2 := Sym(84)!( 6, 9)( 7, 8)(11,14)(12,13)(15,20)(16,24)(17,23)(18,22)(19,21)
(26,29)(27,28)(31,34)(32,33)(35,40)(36,44)(37,43)(38,42)(39,41)(45,80)(46,84)
(47,83)(48,82)(49,81)(50,75)(51,79)(52,78)(53,77)(54,76)(55,65)(56,69)(57,68)
(58,67)(59,66)(60,70)(61,74)(62,73)(63,72)(64,71);
s3 := Sym(84)!( 5,46)( 6,45)( 7,49)( 8,48)( 9,47)(10,51)(11,50)(12,54)(13,53)
(14,52)(15,56)(16,55)(17,59)(18,58)(19,57)(20,61)(21,60)(22,64)(23,63)(24,62)
(25,71)(26,70)(27,74)(28,73)(29,72)(30,66)(31,65)(32,69)(33,68)(34,67)(35,81)
(36,80)(37,84)(38,83)(39,82)(40,76)(41,75)(42,79)(43,78)(44,77);
s4 := Sym(84)!(25,30)(26,31)(27,32)(28,33)(29,34)(35,40)(36,41)(37,42)(38,43)
(39,44)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)
(65,80)(66,81)(67,82)(68,83)(69,84)(70,75)(71,76)(72,77)(73,78)(74,79);
poly := sub<Sym(84)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4*s3*s4, s2*s4*s3*s4*s3*s2*s3*s2*s4*s3*s4*s3*s2*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s4*s3*s2*s3*s2*s4*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope