include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,8,10,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,8,10,2}*640
if this polytope has a name.
Group : SmallGroup(640,21152)
Rank : 5
Schlafli Type : {2,8,10,2}
Number of vertices, edges, etc : 2, 8, 40, 10, 2
Order of s0s1s2s3s4 : 40
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,8,10,2,2} of size 1280
{2,8,10,2,3} of size 1920
Vertex Figure Of :
{2,2,8,10,2} of size 1280
{3,2,8,10,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,10,2}*320
4-fold quotients : {2,2,10,2}*160
5-fold quotients : {2,8,2,2}*128
8-fold quotients : {2,2,5,2}*80
10-fold quotients : {2,4,2,2}*64
20-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,8,10,2}*1280a, {2,8,20,2}*1280a, {2,8,10,4}*1280, {2,16,10,2}*1280
3-fold covers : {2,8,30,2}*1920, {2,8,10,6}*1920, {6,8,10,2}*1920, {2,24,10,2}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (13,18)(14,19)(15,20)(16,21)(17,22)(23,38)(24,39)(25,40)(26,41)(27,42)
(28,33)(29,34)(30,35)(31,36)(32,37);;
s2 := ( 3,23)( 4,27)( 5,26)( 6,25)( 7,24)( 8,28)( 9,32)(10,31)(11,30)(12,29)
(13,38)(14,42)(15,41)(16,40)(17,39)(18,33)(19,37)(20,36)(21,35)(22,34);;
s3 := ( 3, 4)( 5, 7)( 8, 9)(10,12)(13,14)(15,17)(18,19)(20,22)(23,24)(25,27)
(28,29)(30,32)(33,34)(35,37)(38,39)(40,42);;
s4 := (43,44);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(44)!(1,2);
s1 := Sym(44)!(13,18)(14,19)(15,20)(16,21)(17,22)(23,38)(24,39)(25,40)(26,41)
(27,42)(28,33)(29,34)(30,35)(31,36)(32,37);
s2 := Sym(44)!( 3,23)( 4,27)( 5,26)( 6,25)( 7,24)( 8,28)( 9,32)(10,31)(11,30)
(12,29)(13,38)(14,42)(15,41)(16,40)(17,39)(18,33)(19,37)(20,36)(21,35)(22,34);
s3 := Sym(44)!( 3, 4)( 5, 7)( 8, 9)(10,12)(13,14)(15,17)(18,19)(20,22)(23,24)
(25,27)(28,29)(30,32)(33,34)(35,37)(38,39)(40,42);
s4 := Sym(44)!(43,44);
poly := sub<Sym(44)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s3*s2*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope