Polytope of Type {26,26}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {26,26}*1352b
if this polytope has a name.
Group : SmallGroup(1352,49)
Rank : 3
Schlafli Type : {26,26}
Number of vertices, edges, etc : 26, 338, 26
Order of s0s1s2 : 26
Order of s0s1s2s1 : 26
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {26,13}*676
   13-fold quotients : {2,26}*104
   26-fold quotients : {2,13}*52
   169-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 14,157)( 15,158)( 16,159)( 17,160)( 18,161)( 19,162)( 20,163)( 21,164)
( 22,165)( 23,166)( 24,167)( 25,168)( 26,169)( 27,144)( 28,145)( 29,146)
( 30,147)( 31,148)( 32,149)( 33,150)( 34,151)( 35,152)( 36,153)( 37,154)
( 38,155)( 39,156)( 40,131)( 41,132)( 42,133)( 43,134)( 44,135)( 45,136)
( 46,137)( 47,138)( 48,139)( 49,140)( 50,141)( 51,142)( 52,143)( 53,118)
( 54,119)( 55,120)( 56,121)( 57,122)( 58,123)( 59,124)( 60,125)( 61,126)
( 62,127)( 63,128)( 64,129)( 65,130)( 66,105)( 67,106)( 68,107)( 69,108)
( 70,109)( 71,110)( 72,111)( 73,112)( 74,113)( 75,114)( 76,115)( 77,116)
( 78,117)( 79, 92)( 80, 93)( 81, 94)( 82, 95)( 83, 96)( 84, 97)( 85, 98)
( 86, 99)( 87,100)( 88,101)( 89,102)( 90,103)( 91,104)(183,326)(184,327)
(185,328)(186,329)(187,330)(188,331)(189,332)(190,333)(191,334)(192,335)
(193,336)(194,337)(195,338)(196,313)(197,314)(198,315)(199,316)(200,317)
(201,318)(202,319)(203,320)(204,321)(205,322)(206,323)(207,324)(208,325)
(209,300)(210,301)(211,302)(212,303)(213,304)(214,305)(215,306)(216,307)
(217,308)(218,309)(219,310)(220,311)(221,312)(222,287)(223,288)(224,289)
(225,290)(226,291)(227,292)(228,293)(229,294)(230,295)(231,296)(232,297)
(233,298)(234,299)(235,274)(236,275)(237,276)(238,277)(239,278)(240,279)
(241,280)(242,281)(243,282)(244,283)(245,284)(246,285)(247,286)(248,261)
(249,262)(250,263)(251,264)(252,265)(253,266)(254,267)(255,268)(256,269)
(257,270)(258,271)(259,272)(260,273);;
s1 := (  1, 14)(  2, 26)(  3, 25)(  4, 24)(  5, 23)(  6, 22)(  7, 21)(  8, 20)
(  9, 19)( 10, 18)( 11, 17)( 12, 16)( 13, 15)( 27,157)( 28,169)( 29,168)
( 30,167)( 31,166)( 32,165)( 33,164)( 34,163)( 35,162)( 36,161)( 37,160)
( 38,159)( 39,158)( 40,144)( 41,156)( 42,155)( 43,154)( 44,153)( 45,152)
( 46,151)( 47,150)( 48,149)( 49,148)( 50,147)( 51,146)( 52,145)( 53,131)
( 54,143)( 55,142)( 56,141)( 57,140)( 58,139)( 59,138)( 60,137)( 61,136)
( 62,135)( 63,134)( 64,133)( 65,132)( 66,118)( 67,130)( 68,129)( 69,128)
( 70,127)( 71,126)( 72,125)( 73,124)( 74,123)( 75,122)( 76,121)( 77,120)
( 78,119)( 79,105)( 80,117)( 81,116)( 82,115)( 83,114)( 84,113)( 85,112)
( 86,111)( 87,110)( 88,109)( 89,108)( 90,107)( 91,106)( 93,104)( 94,103)
( 95,102)( 96,101)( 97,100)( 98, 99)(170,183)(171,195)(172,194)(173,193)
(174,192)(175,191)(176,190)(177,189)(178,188)(179,187)(180,186)(181,185)
(182,184)(196,326)(197,338)(198,337)(199,336)(200,335)(201,334)(202,333)
(203,332)(204,331)(205,330)(206,329)(207,328)(208,327)(209,313)(210,325)
(211,324)(212,323)(213,322)(214,321)(215,320)(216,319)(217,318)(218,317)
(219,316)(220,315)(221,314)(222,300)(223,312)(224,311)(225,310)(226,309)
(227,308)(228,307)(229,306)(230,305)(231,304)(232,303)(233,302)(234,301)
(235,287)(236,299)(237,298)(238,297)(239,296)(240,295)(241,294)(242,293)
(243,292)(244,291)(245,290)(246,289)(247,288)(248,274)(249,286)(250,285)
(251,284)(252,283)(253,282)(254,281)(255,280)(256,279)(257,278)(258,277)
(259,276)(260,275)(262,273)(263,272)(264,271)(265,270)(266,269)(267,268);;
s2 := (  1,171)(  2,170)(  3,182)(  4,181)(  5,180)(  6,179)(  7,178)(  8,177)
(  9,176)( 10,175)( 11,174)( 12,173)( 13,172)( 14,327)( 15,326)( 16,338)
( 17,337)( 18,336)( 19,335)( 20,334)( 21,333)( 22,332)( 23,331)( 24,330)
( 25,329)( 26,328)( 27,314)( 28,313)( 29,325)( 30,324)( 31,323)( 32,322)
( 33,321)( 34,320)( 35,319)( 36,318)( 37,317)( 38,316)( 39,315)( 40,301)
( 41,300)( 42,312)( 43,311)( 44,310)( 45,309)( 46,308)( 47,307)( 48,306)
( 49,305)( 50,304)( 51,303)( 52,302)( 53,288)( 54,287)( 55,299)( 56,298)
( 57,297)( 58,296)( 59,295)( 60,294)( 61,293)( 62,292)( 63,291)( 64,290)
( 65,289)( 66,275)( 67,274)( 68,286)( 69,285)( 70,284)( 71,283)( 72,282)
( 73,281)( 74,280)( 75,279)( 76,278)( 77,277)( 78,276)( 79,262)( 80,261)
( 81,273)( 82,272)( 83,271)( 84,270)( 85,269)( 86,268)( 87,267)( 88,266)
( 89,265)( 90,264)( 91,263)( 92,249)( 93,248)( 94,260)( 95,259)( 96,258)
( 97,257)( 98,256)( 99,255)(100,254)(101,253)(102,252)(103,251)(104,250)
(105,236)(106,235)(107,247)(108,246)(109,245)(110,244)(111,243)(112,242)
(113,241)(114,240)(115,239)(116,238)(117,237)(118,223)(119,222)(120,234)
(121,233)(122,232)(123,231)(124,230)(125,229)(126,228)(127,227)(128,226)
(129,225)(130,224)(131,210)(132,209)(133,221)(134,220)(135,219)(136,218)
(137,217)(138,216)(139,215)(140,214)(141,213)(142,212)(143,211)(144,197)
(145,196)(146,208)(147,207)(148,206)(149,205)(150,204)(151,203)(152,202)
(153,201)(154,200)(155,199)(156,198)(157,184)(158,183)(159,195)(160,194)
(161,193)(162,192)(163,191)(164,190)(165,189)(166,188)(167,187)(168,186)
(169,185);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(338)!( 14,157)( 15,158)( 16,159)( 17,160)( 18,161)( 19,162)( 20,163)
( 21,164)( 22,165)( 23,166)( 24,167)( 25,168)( 26,169)( 27,144)( 28,145)
( 29,146)( 30,147)( 31,148)( 32,149)( 33,150)( 34,151)( 35,152)( 36,153)
( 37,154)( 38,155)( 39,156)( 40,131)( 41,132)( 42,133)( 43,134)( 44,135)
( 45,136)( 46,137)( 47,138)( 48,139)( 49,140)( 50,141)( 51,142)( 52,143)
( 53,118)( 54,119)( 55,120)( 56,121)( 57,122)( 58,123)( 59,124)( 60,125)
( 61,126)( 62,127)( 63,128)( 64,129)( 65,130)( 66,105)( 67,106)( 68,107)
( 69,108)( 70,109)( 71,110)( 72,111)( 73,112)( 74,113)( 75,114)( 76,115)
( 77,116)( 78,117)( 79, 92)( 80, 93)( 81, 94)( 82, 95)( 83, 96)( 84, 97)
( 85, 98)( 86, 99)( 87,100)( 88,101)( 89,102)( 90,103)( 91,104)(183,326)
(184,327)(185,328)(186,329)(187,330)(188,331)(189,332)(190,333)(191,334)
(192,335)(193,336)(194,337)(195,338)(196,313)(197,314)(198,315)(199,316)
(200,317)(201,318)(202,319)(203,320)(204,321)(205,322)(206,323)(207,324)
(208,325)(209,300)(210,301)(211,302)(212,303)(213,304)(214,305)(215,306)
(216,307)(217,308)(218,309)(219,310)(220,311)(221,312)(222,287)(223,288)
(224,289)(225,290)(226,291)(227,292)(228,293)(229,294)(230,295)(231,296)
(232,297)(233,298)(234,299)(235,274)(236,275)(237,276)(238,277)(239,278)
(240,279)(241,280)(242,281)(243,282)(244,283)(245,284)(246,285)(247,286)
(248,261)(249,262)(250,263)(251,264)(252,265)(253,266)(254,267)(255,268)
(256,269)(257,270)(258,271)(259,272)(260,273);
s1 := Sym(338)!(  1, 14)(  2, 26)(  3, 25)(  4, 24)(  5, 23)(  6, 22)(  7, 21)
(  8, 20)(  9, 19)( 10, 18)( 11, 17)( 12, 16)( 13, 15)( 27,157)( 28,169)
( 29,168)( 30,167)( 31,166)( 32,165)( 33,164)( 34,163)( 35,162)( 36,161)
( 37,160)( 38,159)( 39,158)( 40,144)( 41,156)( 42,155)( 43,154)( 44,153)
( 45,152)( 46,151)( 47,150)( 48,149)( 49,148)( 50,147)( 51,146)( 52,145)
( 53,131)( 54,143)( 55,142)( 56,141)( 57,140)( 58,139)( 59,138)( 60,137)
( 61,136)( 62,135)( 63,134)( 64,133)( 65,132)( 66,118)( 67,130)( 68,129)
( 69,128)( 70,127)( 71,126)( 72,125)( 73,124)( 74,123)( 75,122)( 76,121)
( 77,120)( 78,119)( 79,105)( 80,117)( 81,116)( 82,115)( 83,114)( 84,113)
( 85,112)( 86,111)( 87,110)( 88,109)( 89,108)( 90,107)( 91,106)( 93,104)
( 94,103)( 95,102)( 96,101)( 97,100)( 98, 99)(170,183)(171,195)(172,194)
(173,193)(174,192)(175,191)(176,190)(177,189)(178,188)(179,187)(180,186)
(181,185)(182,184)(196,326)(197,338)(198,337)(199,336)(200,335)(201,334)
(202,333)(203,332)(204,331)(205,330)(206,329)(207,328)(208,327)(209,313)
(210,325)(211,324)(212,323)(213,322)(214,321)(215,320)(216,319)(217,318)
(218,317)(219,316)(220,315)(221,314)(222,300)(223,312)(224,311)(225,310)
(226,309)(227,308)(228,307)(229,306)(230,305)(231,304)(232,303)(233,302)
(234,301)(235,287)(236,299)(237,298)(238,297)(239,296)(240,295)(241,294)
(242,293)(243,292)(244,291)(245,290)(246,289)(247,288)(248,274)(249,286)
(250,285)(251,284)(252,283)(253,282)(254,281)(255,280)(256,279)(257,278)
(258,277)(259,276)(260,275)(262,273)(263,272)(264,271)(265,270)(266,269)
(267,268);
s2 := Sym(338)!(  1,171)(  2,170)(  3,182)(  4,181)(  5,180)(  6,179)(  7,178)
(  8,177)(  9,176)( 10,175)( 11,174)( 12,173)( 13,172)( 14,327)( 15,326)
( 16,338)( 17,337)( 18,336)( 19,335)( 20,334)( 21,333)( 22,332)( 23,331)
( 24,330)( 25,329)( 26,328)( 27,314)( 28,313)( 29,325)( 30,324)( 31,323)
( 32,322)( 33,321)( 34,320)( 35,319)( 36,318)( 37,317)( 38,316)( 39,315)
( 40,301)( 41,300)( 42,312)( 43,311)( 44,310)( 45,309)( 46,308)( 47,307)
( 48,306)( 49,305)( 50,304)( 51,303)( 52,302)( 53,288)( 54,287)( 55,299)
( 56,298)( 57,297)( 58,296)( 59,295)( 60,294)( 61,293)( 62,292)( 63,291)
( 64,290)( 65,289)( 66,275)( 67,274)( 68,286)( 69,285)( 70,284)( 71,283)
( 72,282)( 73,281)( 74,280)( 75,279)( 76,278)( 77,277)( 78,276)( 79,262)
( 80,261)( 81,273)( 82,272)( 83,271)( 84,270)( 85,269)( 86,268)( 87,267)
( 88,266)( 89,265)( 90,264)( 91,263)( 92,249)( 93,248)( 94,260)( 95,259)
( 96,258)( 97,257)( 98,256)( 99,255)(100,254)(101,253)(102,252)(103,251)
(104,250)(105,236)(106,235)(107,247)(108,246)(109,245)(110,244)(111,243)
(112,242)(113,241)(114,240)(115,239)(116,238)(117,237)(118,223)(119,222)
(120,234)(121,233)(122,232)(123,231)(124,230)(125,229)(126,228)(127,227)
(128,226)(129,225)(130,224)(131,210)(132,209)(133,221)(134,220)(135,219)
(136,218)(137,217)(138,216)(139,215)(140,214)(141,213)(142,212)(143,211)
(144,197)(145,196)(146,208)(147,207)(148,206)(149,205)(150,204)(151,203)
(152,202)(153,201)(154,200)(155,199)(156,198)(157,184)(158,183)(159,195)
(160,194)(161,193)(162,192)(163,191)(164,190)(165,189)(166,188)(167,187)
(168,186)(169,185);
poly := sub<Sym(338)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope