Polytope of Type {2,416}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,416}*1664
if this polytope has a name.
Group : SmallGroup(1664,6808)
Rank : 3
Schlafli Type : {2,416}
Number of vertices, edges, etc : 2, 416, 416
Order of s0s1s2 : 416
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,208}*832
   4-fold quotients : {2,104}*416
   8-fold quotients : {2,52}*208
   13-fold quotients : {2,32}*128
   16-fold quotients : {2,26}*104
   26-fold quotients : {2,16}*64
   32-fold quotients : {2,13}*52
   52-fold quotients : {2,8}*32
   104-fold quotients : {2,4}*16
   208-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4, 15)(  5, 14)(  6, 13)(  7, 12)(  8, 11)(  9, 10)( 17, 28)( 18, 27)
( 19, 26)( 20, 25)( 21, 24)( 22, 23)( 29, 42)( 30, 54)( 31, 53)( 32, 52)
( 33, 51)( 34, 50)( 35, 49)( 36, 48)( 37, 47)( 38, 46)( 39, 45)( 40, 44)
( 41, 43)( 55, 81)( 56, 93)( 57, 92)( 58, 91)( 59, 90)( 60, 89)( 61, 88)
( 62, 87)( 63, 86)( 64, 85)( 65, 84)( 66, 83)( 67, 82)( 68, 94)( 69,106)
( 70,105)( 71,104)( 72,103)( 73,102)( 74,101)( 75,100)( 76, 99)( 77, 98)
( 78, 97)( 79, 96)( 80, 95)(107,159)(108,171)(109,170)(110,169)(111,168)
(112,167)(113,166)(114,165)(115,164)(116,163)(117,162)(118,161)(119,160)
(120,172)(121,184)(122,183)(123,182)(124,181)(125,180)(126,179)(127,178)
(128,177)(129,176)(130,175)(131,174)(132,173)(133,198)(134,210)(135,209)
(136,208)(137,207)(138,206)(139,205)(140,204)(141,203)(142,202)(143,201)
(144,200)(145,199)(146,185)(147,197)(148,196)(149,195)(150,194)(151,193)
(152,192)(153,191)(154,190)(155,189)(156,188)(157,187)(158,186)(211,315)
(212,327)(213,326)(214,325)(215,324)(216,323)(217,322)(218,321)(219,320)
(220,319)(221,318)(222,317)(223,316)(224,328)(225,340)(226,339)(227,338)
(228,337)(229,336)(230,335)(231,334)(232,333)(233,332)(234,331)(235,330)
(236,329)(237,354)(238,366)(239,365)(240,364)(241,363)(242,362)(243,361)
(244,360)(245,359)(246,358)(247,357)(248,356)(249,355)(250,341)(251,353)
(252,352)(253,351)(254,350)(255,349)(256,348)(257,347)(258,346)(259,345)
(260,344)(261,343)(262,342)(263,393)(264,405)(265,404)(266,403)(267,402)
(268,401)(269,400)(270,399)(271,398)(272,397)(273,396)(274,395)(275,394)
(276,406)(277,418)(278,417)(279,416)(280,415)(281,414)(282,413)(283,412)
(284,411)(285,410)(286,409)(287,408)(288,407)(289,367)(290,379)(291,378)
(292,377)(293,376)(294,375)(295,374)(296,373)(297,372)(298,371)(299,370)
(300,369)(301,368)(302,380)(303,392)(304,391)(305,390)(306,389)(307,388)
(308,387)(309,386)(310,385)(311,384)(312,383)(313,382)(314,381);;
s2 := (  3,212)(  4,211)(  5,223)(  6,222)(  7,221)(  8,220)(  9,219)( 10,218)
( 11,217)( 12,216)( 13,215)( 14,214)( 15,213)( 16,225)( 17,224)( 18,236)
( 19,235)( 20,234)( 21,233)( 22,232)( 23,231)( 24,230)( 25,229)( 26,228)
( 27,227)( 28,226)( 29,251)( 30,250)( 31,262)( 32,261)( 33,260)( 34,259)
( 35,258)( 36,257)( 37,256)( 38,255)( 39,254)( 40,253)( 41,252)( 42,238)
( 43,237)( 44,249)( 45,248)( 46,247)( 47,246)( 48,245)( 49,244)( 50,243)
( 51,242)( 52,241)( 53,240)( 54,239)( 55,290)( 56,289)( 57,301)( 58,300)
( 59,299)( 60,298)( 61,297)( 62,296)( 63,295)( 64,294)( 65,293)( 66,292)
( 67,291)( 68,303)( 69,302)( 70,314)( 71,313)( 72,312)( 73,311)( 74,310)
( 75,309)( 76,308)( 77,307)( 78,306)( 79,305)( 80,304)( 81,264)( 82,263)
( 83,275)( 84,274)( 85,273)( 86,272)( 87,271)( 88,270)( 89,269)( 90,268)
( 91,267)( 92,266)( 93,265)( 94,277)( 95,276)( 96,288)( 97,287)( 98,286)
( 99,285)(100,284)(101,283)(102,282)(103,281)(104,280)(105,279)(106,278)
(107,368)(108,367)(109,379)(110,378)(111,377)(112,376)(113,375)(114,374)
(115,373)(116,372)(117,371)(118,370)(119,369)(120,381)(121,380)(122,392)
(123,391)(124,390)(125,389)(126,388)(127,387)(128,386)(129,385)(130,384)
(131,383)(132,382)(133,407)(134,406)(135,418)(136,417)(137,416)(138,415)
(139,414)(140,413)(141,412)(142,411)(143,410)(144,409)(145,408)(146,394)
(147,393)(148,405)(149,404)(150,403)(151,402)(152,401)(153,400)(154,399)
(155,398)(156,397)(157,396)(158,395)(159,316)(160,315)(161,327)(162,326)
(163,325)(164,324)(165,323)(166,322)(167,321)(168,320)(169,319)(170,318)
(171,317)(172,329)(173,328)(174,340)(175,339)(176,338)(177,337)(178,336)
(179,335)(180,334)(181,333)(182,332)(183,331)(184,330)(185,355)(186,354)
(187,366)(188,365)(189,364)(190,363)(191,362)(192,361)(193,360)(194,359)
(195,358)(196,357)(197,356)(198,342)(199,341)(200,353)(201,352)(202,351)
(203,350)(204,349)(205,348)(206,347)(207,346)(208,345)(209,344)(210,343);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(418)!(1,2);
s1 := Sym(418)!(  4, 15)(  5, 14)(  6, 13)(  7, 12)(  8, 11)(  9, 10)( 17, 28)
( 18, 27)( 19, 26)( 20, 25)( 21, 24)( 22, 23)( 29, 42)( 30, 54)( 31, 53)
( 32, 52)( 33, 51)( 34, 50)( 35, 49)( 36, 48)( 37, 47)( 38, 46)( 39, 45)
( 40, 44)( 41, 43)( 55, 81)( 56, 93)( 57, 92)( 58, 91)( 59, 90)( 60, 89)
( 61, 88)( 62, 87)( 63, 86)( 64, 85)( 65, 84)( 66, 83)( 67, 82)( 68, 94)
( 69,106)( 70,105)( 71,104)( 72,103)( 73,102)( 74,101)( 75,100)( 76, 99)
( 77, 98)( 78, 97)( 79, 96)( 80, 95)(107,159)(108,171)(109,170)(110,169)
(111,168)(112,167)(113,166)(114,165)(115,164)(116,163)(117,162)(118,161)
(119,160)(120,172)(121,184)(122,183)(123,182)(124,181)(125,180)(126,179)
(127,178)(128,177)(129,176)(130,175)(131,174)(132,173)(133,198)(134,210)
(135,209)(136,208)(137,207)(138,206)(139,205)(140,204)(141,203)(142,202)
(143,201)(144,200)(145,199)(146,185)(147,197)(148,196)(149,195)(150,194)
(151,193)(152,192)(153,191)(154,190)(155,189)(156,188)(157,187)(158,186)
(211,315)(212,327)(213,326)(214,325)(215,324)(216,323)(217,322)(218,321)
(219,320)(220,319)(221,318)(222,317)(223,316)(224,328)(225,340)(226,339)
(227,338)(228,337)(229,336)(230,335)(231,334)(232,333)(233,332)(234,331)
(235,330)(236,329)(237,354)(238,366)(239,365)(240,364)(241,363)(242,362)
(243,361)(244,360)(245,359)(246,358)(247,357)(248,356)(249,355)(250,341)
(251,353)(252,352)(253,351)(254,350)(255,349)(256,348)(257,347)(258,346)
(259,345)(260,344)(261,343)(262,342)(263,393)(264,405)(265,404)(266,403)
(267,402)(268,401)(269,400)(270,399)(271,398)(272,397)(273,396)(274,395)
(275,394)(276,406)(277,418)(278,417)(279,416)(280,415)(281,414)(282,413)
(283,412)(284,411)(285,410)(286,409)(287,408)(288,407)(289,367)(290,379)
(291,378)(292,377)(293,376)(294,375)(295,374)(296,373)(297,372)(298,371)
(299,370)(300,369)(301,368)(302,380)(303,392)(304,391)(305,390)(306,389)
(307,388)(308,387)(309,386)(310,385)(311,384)(312,383)(313,382)(314,381);
s2 := Sym(418)!(  3,212)(  4,211)(  5,223)(  6,222)(  7,221)(  8,220)(  9,219)
( 10,218)( 11,217)( 12,216)( 13,215)( 14,214)( 15,213)( 16,225)( 17,224)
( 18,236)( 19,235)( 20,234)( 21,233)( 22,232)( 23,231)( 24,230)( 25,229)
( 26,228)( 27,227)( 28,226)( 29,251)( 30,250)( 31,262)( 32,261)( 33,260)
( 34,259)( 35,258)( 36,257)( 37,256)( 38,255)( 39,254)( 40,253)( 41,252)
( 42,238)( 43,237)( 44,249)( 45,248)( 46,247)( 47,246)( 48,245)( 49,244)
( 50,243)( 51,242)( 52,241)( 53,240)( 54,239)( 55,290)( 56,289)( 57,301)
( 58,300)( 59,299)( 60,298)( 61,297)( 62,296)( 63,295)( 64,294)( 65,293)
( 66,292)( 67,291)( 68,303)( 69,302)( 70,314)( 71,313)( 72,312)( 73,311)
( 74,310)( 75,309)( 76,308)( 77,307)( 78,306)( 79,305)( 80,304)( 81,264)
( 82,263)( 83,275)( 84,274)( 85,273)( 86,272)( 87,271)( 88,270)( 89,269)
( 90,268)( 91,267)( 92,266)( 93,265)( 94,277)( 95,276)( 96,288)( 97,287)
( 98,286)( 99,285)(100,284)(101,283)(102,282)(103,281)(104,280)(105,279)
(106,278)(107,368)(108,367)(109,379)(110,378)(111,377)(112,376)(113,375)
(114,374)(115,373)(116,372)(117,371)(118,370)(119,369)(120,381)(121,380)
(122,392)(123,391)(124,390)(125,389)(126,388)(127,387)(128,386)(129,385)
(130,384)(131,383)(132,382)(133,407)(134,406)(135,418)(136,417)(137,416)
(138,415)(139,414)(140,413)(141,412)(142,411)(143,410)(144,409)(145,408)
(146,394)(147,393)(148,405)(149,404)(150,403)(151,402)(152,401)(153,400)
(154,399)(155,398)(156,397)(157,396)(158,395)(159,316)(160,315)(161,327)
(162,326)(163,325)(164,324)(165,323)(166,322)(167,321)(168,320)(169,319)
(170,318)(171,317)(172,329)(173,328)(174,340)(175,339)(176,338)(177,337)
(178,336)(179,335)(180,334)(181,333)(182,332)(183,331)(184,330)(185,355)
(186,354)(187,366)(188,365)(189,364)(190,363)(191,362)(192,361)(193,360)
(194,359)(195,358)(196,357)(197,356)(198,342)(199,341)(200,353)(201,352)
(202,351)(203,350)(204,349)(205,348)(206,347)(207,346)(208,345)(209,344)
(210,343);
poly := sub<Sym(418)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope