include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {416}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {416}*832
Also Known As : 416-gon, {416}. if this polytope has another name.
Group : SmallGroup(832,6)
Rank : 2
Schlafli Type : {416}
Number of vertices, edges, etc : 416, 416
Order of s0s1 : 416
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{416,2} of size 1664
Vertex Figure Of :
{2,416} of size 1664
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {208}*416
4-fold quotients : {104}*208
8-fold quotients : {52}*104
13-fold quotients : {32}*64
16-fold quotients : {26}*52
26-fold quotients : {16}*32
32-fold quotients : {13}*26
52-fold quotients : {8}*16
104-fold quotients : {4}*8
208-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
2-fold covers : {832}*1664
Permutation Representation (GAP) :
s0 := ( 2, 13)( 3, 12)( 4, 11)( 5, 10)( 6, 9)( 7, 8)( 15, 26)( 16, 25)
( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 27, 40)( 28, 52)( 29, 51)( 30, 50)
( 31, 49)( 32, 48)( 33, 47)( 34, 46)( 35, 45)( 36, 44)( 37, 43)( 38, 42)
( 39, 41)( 53, 79)( 54, 91)( 55, 90)( 56, 89)( 57, 88)( 58, 87)( 59, 86)
( 60, 85)( 61, 84)( 62, 83)( 63, 82)( 64, 81)( 65, 80)( 66, 92)( 67,104)
( 68,103)( 69,102)( 70,101)( 71,100)( 72, 99)( 73, 98)( 74, 97)( 75, 96)
( 76, 95)( 77, 94)( 78, 93)(105,157)(106,169)(107,168)(108,167)(109,166)
(110,165)(111,164)(112,163)(113,162)(114,161)(115,160)(116,159)(117,158)
(118,170)(119,182)(120,181)(121,180)(122,179)(123,178)(124,177)(125,176)
(126,175)(127,174)(128,173)(129,172)(130,171)(131,196)(132,208)(133,207)
(134,206)(135,205)(136,204)(137,203)(138,202)(139,201)(140,200)(141,199)
(142,198)(143,197)(144,183)(145,195)(146,194)(147,193)(148,192)(149,191)
(150,190)(151,189)(152,188)(153,187)(154,186)(155,185)(156,184)(209,313)
(210,325)(211,324)(212,323)(213,322)(214,321)(215,320)(216,319)(217,318)
(218,317)(219,316)(220,315)(221,314)(222,326)(223,338)(224,337)(225,336)
(226,335)(227,334)(228,333)(229,332)(230,331)(231,330)(232,329)(233,328)
(234,327)(235,352)(236,364)(237,363)(238,362)(239,361)(240,360)(241,359)
(242,358)(243,357)(244,356)(245,355)(246,354)(247,353)(248,339)(249,351)
(250,350)(251,349)(252,348)(253,347)(254,346)(255,345)(256,344)(257,343)
(258,342)(259,341)(260,340)(261,391)(262,403)(263,402)(264,401)(265,400)
(266,399)(267,398)(268,397)(269,396)(270,395)(271,394)(272,393)(273,392)
(274,404)(275,416)(276,415)(277,414)(278,413)(279,412)(280,411)(281,410)
(282,409)(283,408)(284,407)(285,406)(286,405)(287,365)(288,377)(289,376)
(290,375)(291,374)(292,373)(293,372)(294,371)(295,370)(296,369)(297,368)
(298,367)(299,366)(300,378)(301,390)(302,389)(303,388)(304,387)(305,386)
(306,385)(307,384)(308,383)(309,382)(310,381)(311,380)(312,379);;
s1 := ( 1,210)( 2,209)( 3,221)( 4,220)( 5,219)( 6,218)( 7,217)( 8,216)
( 9,215)( 10,214)( 11,213)( 12,212)( 13,211)( 14,223)( 15,222)( 16,234)
( 17,233)( 18,232)( 19,231)( 20,230)( 21,229)( 22,228)( 23,227)( 24,226)
( 25,225)( 26,224)( 27,249)( 28,248)( 29,260)( 30,259)( 31,258)( 32,257)
( 33,256)( 34,255)( 35,254)( 36,253)( 37,252)( 38,251)( 39,250)( 40,236)
( 41,235)( 42,247)( 43,246)( 44,245)( 45,244)( 46,243)( 47,242)( 48,241)
( 49,240)( 50,239)( 51,238)( 52,237)( 53,288)( 54,287)( 55,299)( 56,298)
( 57,297)( 58,296)( 59,295)( 60,294)( 61,293)( 62,292)( 63,291)( 64,290)
( 65,289)( 66,301)( 67,300)( 68,312)( 69,311)( 70,310)( 71,309)( 72,308)
( 73,307)( 74,306)( 75,305)( 76,304)( 77,303)( 78,302)( 79,262)( 80,261)
( 81,273)( 82,272)( 83,271)( 84,270)( 85,269)( 86,268)( 87,267)( 88,266)
( 89,265)( 90,264)( 91,263)( 92,275)( 93,274)( 94,286)( 95,285)( 96,284)
( 97,283)( 98,282)( 99,281)(100,280)(101,279)(102,278)(103,277)(104,276)
(105,366)(106,365)(107,377)(108,376)(109,375)(110,374)(111,373)(112,372)
(113,371)(114,370)(115,369)(116,368)(117,367)(118,379)(119,378)(120,390)
(121,389)(122,388)(123,387)(124,386)(125,385)(126,384)(127,383)(128,382)
(129,381)(130,380)(131,405)(132,404)(133,416)(134,415)(135,414)(136,413)
(137,412)(138,411)(139,410)(140,409)(141,408)(142,407)(143,406)(144,392)
(145,391)(146,403)(147,402)(148,401)(149,400)(150,399)(151,398)(152,397)
(153,396)(154,395)(155,394)(156,393)(157,314)(158,313)(159,325)(160,324)
(161,323)(162,322)(163,321)(164,320)(165,319)(166,318)(167,317)(168,316)
(169,315)(170,327)(171,326)(172,338)(173,337)(174,336)(175,335)(176,334)
(177,333)(178,332)(179,331)(180,330)(181,329)(182,328)(183,353)(184,352)
(185,364)(186,363)(187,362)(188,361)(189,360)(190,359)(191,358)(192,357)
(193,356)(194,355)(195,354)(196,340)(197,339)(198,351)(199,350)(200,349)
(201,348)(202,347)(203,346)(204,345)(205,344)(206,343)(207,342)(208,341);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(416)!( 2, 13)( 3, 12)( 4, 11)( 5, 10)( 6, 9)( 7, 8)( 15, 26)
( 16, 25)( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 27, 40)( 28, 52)( 29, 51)
( 30, 50)( 31, 49)( 32, 48)( 33, 47)( 34, 46)( 35, 45)( 36, 44)( 37, 43)
( 38, 42)( 39, 41)( 53, 79)( 54, 91)( 55, 90)( 56, 89)( 57, 88)( 58, 87)
( 59, 86)( 60, 85)( 61, 84)( 62, 83)( 63, 82)( 64, 81)( 65, 80)( 66, 92)
( 67,104)( 68,103)( 69,102)( 70,101)( 71,100)( 72, 99)( 73, 98)( 74, 97)
( 75, 96)( 76, 95)( 77, 94)( 78, 93)(105,157)(106,169)(107,168)(108,167)
(109,166)(110,165)(111,164)(112,163)(113,162)(114,161)(115,160)(116,159)
(117,158)(118,170)(119,182)(120,181)(121,180)(122,179)(123,178)(124,177)
(125,176)(126,175)(127,174)(128,173)(129,172)(130,171)(131,196)(132,208)
(133,207)(134,206)(135,205)(136,204)(137,203)(138,202)(139,201)(140,200)
(141,199)(142,198)(143,197)(144,183)(145,195)(146,194)(147,193)(148,192)
(149,191)(150,190)(151,189)(152,188)(153,187)(154,186)(155,185)(156,184)
(209,313)(210,325)(211,324)(212,323)(213,322)(214,321)(215,320)(216,319)
(217,318)(218,317)(219,316)(220,315)(221,314)(222,326)(223,338)(224,337)
(225,336)(226,335)(227,334)(228,333)(229,332)(230,331)(231,330)(232,329)
(233,328)(234,327)(235,352)(236,364)(237,363)(238,362)(239,361)(240,360)
(241,359)(242,358)(243,357)(244,356)(245,355)(246,354)(247,353)(248,339)
(249,351)(250,350)(251,349)(252,348)(253,347)(254,346)(255,345)(256,344)
(257,343)(258,342)(259,341)(260,340)(261,391)(262,403)(263,402)(264,401)
(265,400)(266,399)(267,398)(268,397)(269,396)(270,395)(271,394)(272,393)
(273,392)(274,404)(275,416)(276,415)(277,414)(278,413)(279,412)(280,411)
(281,410)(282,409)(283,408)(284,407)(285,406)(286,405)(287,365)(288,377)
(289,376)(290,375)(291,374)(292,373)(293,372)(294,371)(295,370)(296,369)
(297,368)(298,367)(299,366)(300,378)(301,390)(302,389)(303,388)(304,387)
(305,386)(306,385)(307,384)(308,383)(309,382)(310,381)(311,380)(312,379);
s1 := Sym(416)!( 1,210)( 2,209)( 3,221)( 4,220)( 5,219)( 6,218)( 7,217)
( 8,216)( 9,215)( 10,214)( 11,213)( 12,212)( 13,211)( 14,223)( 15,222)
( 16,234)( 17,233)( 18,232)( 19,231)( 20,230)( 21,229)( 22,228)( 23,227)
( 24,226)( 25,225)( 26,224)( 27,249)( 28,248)( 29,260)( 30,259)( 31,258)
( 32,257)( 33,256)( 34,255)( 35,254)( 36,253)( 37,252)( 38,251)( 39,250)
( 40,236)( 41,235)( 42,247)( 43,246)( 44,245)( 45,244)( 46,243)( 47,242)
( 48,241)( 49,240)( 50,239)( 51,238)( 52,237)( 53,288)( 54,287)( 55,299)
( 56,298)( 57,297)( 58,296)( 59,295)( 60,294)( 61,293)( 62,292)( 63,291)
( 64,290)( 65,289)( 66,301)( 67,300)( 68,312)( 69,311)( 70,310)( 71,309)
( 72,308)( 73,307)( 74,306)( 75,305)( 76,304)( 77,303)( 78,302)( 79,262)
( 80,261)( 81,273)( 82,272)( 83,271)( 84,270)( 85,269)( 86,268)( 87,267)
( 88,266)( 89,265)( 90,264)( 91,263)( 92,275)( 93,274)( 94,286)( 95,285)
( 96,284)( 97,283)( 98,282)( 99,281)(100,280)(101,279)(102,278)(103,277)
(104,276)(105,366)(106,365)(107,377)(108,376)(109,375)(110,374)(111,373)
(112,372)(113,371)(114,370)(115,369)(116,368)(117,367)(118,379)(119,378)
(120,390)(121,389)(122,388)(123,387)(124,386)(125,385)(126,384)(127,383)
(128,382)(129,381)(130,380)(131,405)(132,404)(133,416)(134,415)(135,414)
(136,413)(137,412)(138,411)(139,410)(140,409)(141,408)(142,407)(143,406)
(144,392)(145,391)(146,403)(147,402)(148,401)(149,400)(150,399)(151,398)
(152,397)(153,396)(154,395)(155,394)(156,393)(157,314)(158,313)(159,325)
(160,324)(161,323)(162,322)(163,321)(164,320)(165,319)(166,318)(167,317)
(168,316)(169,315)(170,327)(171,326)(172,338)(173,337)(174,336)(175,335)
(176,334)(177,333)(178,332)(179,331)(180,330)(181,329)(182,328)(183,353)
(184,352)(185,364)(186,363)(187,362)(188,361)(189,360)(190,359)(191,358)
(192,357)(193,356)(194,355)(195,354)(196,340)(197,339)(198,351)(199,350)
(200,349)(201,348)(202,347)(203,346)(204,345)(205,344)(206,343)(207,342)
(208,341);
poly := sub<Sym(416)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope