Polytope of Type {2,444}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,444}*1776
if this polytope has a name.
Group : SmallGroup(1776,226)
Rank : 3
Schlafli Type : {2,444}
Number of vertices, edges, etc : 2, 444, 444
Order of s0s1s2 : 444
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,222}*888
   3-fold quotients : {2,148}*592
   4-fold quotients : {2,111}*444
   6-fold quotients : {2,74}*296
   12-fold quotients : {2,37}*148
   37-fold quotients : {2,12}*48
   74-fold quotients : {2,6}*24
   111-fold quotients : {2,4}*16
   148-fold quotients : {2,3}*12
   222-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4, 39)(  5, 38)(  6, 37)(  7, 36)(  8, 35)(  9, 34)( 10, 33)( 11, 32)
( 12, 31)( 13, 30)( 14, 29)( 15, 28)( 16, 27)( 17, 26)( 18, 25)( 19, 24)
( 20, 23)( 21, 22)( 40, 77)( 41,113)( 42,112)( 43,111)( 44,110)( 45,109)
( 46,108)( 47,107)( 48,106)( 49,105)( 50,104)( 51,103)( 52,102)( 53,101)
( 54,100)( 55, 99)( 56, 98)( 57, 97)( 58, 96)( 59, 95)( 60, 94)( 61, 93)
( 62, 92)( 63, 91)( 64, 90)( 65, 89)( 66, 88)( 67, 87)( 68, 86)( 69, 85)
( 70, 84)( 71, 83)( 72, 82)( 73, 81)( 74, 80)( 75, 79)( 76, 78)(115,150)
(116,149)(117,148)(118,147)(119,146)(120,145)(121,144)(122,143)(123,142)
(124,141)(125,140)(126,139)(127,138)(128,137)(129,136)(130,135)(131,134)
(132,133)(151,188)(152,224)(153,223)(154,222)(155,221)(156,220)(157,219)
(158,218)(159,217)(160,216)(161,215)(162,214)(163,213)(164,212)(165,211)
(166,210)(167,209)(168,208)(169,207)(170,206)(171,205)(172,204)(173,203)
(174,202)(175,201)(176,200)(177,199)(178,198)(179,197)(180,196)(181,195)
(182,194)(183,193)(184,192)(185,191)(186,190)(187,189)(225,336)(226,372)
(227,371)(228,370)(229,369)(230,368)(231,367)(232,366)(233,365)(234,364)
(235,363)(236,362)(237,361)(238,360)(239,359)(240,358)(241,357)(242,356)
(243,355)(244,354)(245,353)(246,352)(247,351)(248,350)(249,349)(250,348)
(251,347)(252,346)(253,345)(254,344)(255,343)(256,342)(257,341)(258,340)
(259,339)(260,338)(261,337)(262,410)(263,446)(264,445)(265,444)(266,443)
(267,442)(268,441)(269,440)(270,439)(271,438)(272,437)(273,436)(274,435)
(275,434)(276,433)(277,432)(278,431)(279,430)(280,429)(281,428)(282,427)
(283,426)(284,425)(285,424)(286,423)(287,422)(288,421)(289,420)(290,419)
(291,418)(292,417)(293,416)(294,415)(295,414)(296,413)(297,412)(298,411)
(299,373)(300,409)(301,408)(302,407)(303,406)(304,405)(305,404)(306,403)
(307,402)(308,401)(309,400)(310,399)(311,398)(312,397)(313,396)(314,395)
(315,394)(316,393)(317,392)(318,391)(319,390)(320,389)(321,388)(322,387)
(323,386)(324,385)(325,384)(326,383)(327,382)(328,381)(329,380)(330,379)
(331,378)(332,377)(333,376)(334,375)(335,374);;
s2 := (  3,263)(  4,262)(  5,298)(  6,297)(  7,296)(  8,295)(  9,294)( 10,293)
( 11,292)( 12,291)( 13,290)( 14,289)( 15,288)( 16,287)( 17,286)( 18,285)
( 19,284)( 20,283)( 21,282)( 22,281)( 23,280)( 24,279)( 25,278)( 26,277)
( 27,276)( 28,275)( 29,274)( 30,273)( 31,272)( 32,271)( 33,270)( 34,269)
( 35,268)( 36,267)( 37,266)( 38,265)( 39,264)( 40,226)( 41,225)( 42,261)
( 43,260)( 44,259)( 45,258)( 46,257)( 47,256)( 48,255)( 49,254)( 50,253)
( 51,252)( 52,251)( 53,250)( 54,249)( 55,248)( 56,247)( 57,246)( 58,245)
( 59,244)( 60,243)( 61,242)( 62,241)( 63,240)( 64,239)( 65,238)( 66,237)
( 67,236)( 68,235)( 69,234)( 70,233)( 71,232)( 72,231)( 73,230)( 74,229)
( 75,228)( 76,227)( 77,300)( 78,299)( 79,335)( 80,334)( 81,333)( 82,332)
( 83,331)( 84,330)( 85,329)( 86,328)( 87,327)( 88,326)( 89,325)( 90,324)
( 91,323)( 92,322)( 93,321)( 94,320)( 95,319)( 96,318)( 97,317)( 98,316)
( 99,315)(100,314)(101,313)(102,312)(103,311)(104,310)(105,309)(106,308)
(107,307)(108,306)(109,305)(110,304)(111,303)(112,302)(113,301)(114,374)
(115,373)(116,409)(117,408)(118,407)(119,406)(120,405)(121,404)(122,403)
(123,402)(124,401)(125,400)(126,399)(127,398)(128,397)(129,396)(130,395)
(131,394)(132,393)(133,392)(134,391)(135,390)(136,389)(137,388)(138,387)
(139,386)(140,385)(141,384)(142,383)(143,382)(144,381)(145,380)(146,379)
(147,378)(148,377)(149,376)(150,375)(151,337)(152,336)(153,372)(154,371)
(155,370)(156,369)(157,368)(158,367)(159,366)(160,365)(161,364)(162,363)
(163,362)(164,361)(165,360)(166,359)(167,358)(168,357)(169,356)(170,355)
(171,354)(172,353)(173,352)(174,351)(175,350)(176,349)(177,348)(178,347)
(179,346)(180,345)(181,344)(182,343)(183,342)(184,341)(185,340)(186,339)
(187,338)(188,411)(189,410)(190,446)(191,445)(192,444)(193,443)(194,442)
(195,441)(196,440)(197,439)(198,438)(199,437)(200,436)(201,435)(202,434)
(203,433)(204,432)(205,431)(206,430)(207,429)(208,428)(209,427)(210,426)
(211,425)(212,424)(213,423)(214,422)(215,421)(216,420)(217,419)(218,418)
(219,417)(220,416)(221,415)(222,414)(223,413)(224,412);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(446)!(1,2);
s1 := Sym(446)!(  4, 39)(  5, 38)(  6, 37)(  7, 36)(  8, 35)(  9, 34)( 10, 33)
( 11, 32)( 12, 31)( 13, 30)( 14, 29)( 15, 28)( 16, 27)( 17, 26)( 18, 25)
( 19, 24)( 20, 23)( 21, 22)( 40, 77)( 41,113)( 42,112)( 43,111)( 44,110)
( 45,109)( 46,108)( 47,107)( 48,106)( 49,105)( 50,104)( 51,103)( 52,102)
( 53,101)( 54,100)( 55, 99)( 56, 98)( 57, 97)( 58, 96)( 59, 95)( 60, 94)
( 61, 93)( 62, 92)( 63, 91)( 64, 90)( 65, 89)( 66, 88)( 67, 87)( 68, 86)
( 69, 85)( 70, 84)( 71, 83)( 72, 82)( 73, 81)( 74, 80)( 75, 79)( 76, 78)
(115,150)(116,149)(117,148)(118,147)(119,146)(120,145)(121,144)(122,143)
(123,142)(124,141)(125,140)(126,139)(127,138)(128,137)(129,136)(130,135)
(131,134)(132,133)(151,188)(152,224)(153,223)(154,222)(155,221)(156,220)
(157,219)(158,218)(159,217)(160,216)(161,215)(162,214)(163,213)(164,212)
(165,211)(166,210)(167,209)(168,208)(169,207)(170,206)(171,205)(172,204)
(173,203)(174,202)(175,201)(176,200)(177,199)(178,198)(179,197)(180,196)
(181,195)(182,194)(183,193)(184,192)(185,191)(186,190)(187,189)(225,336)
(226,372)(227,371)(228,370)(229,369)(230,368)(231,367)(232,366)(233,365)
(234,364)(235,363)(236,362)(237,361)(238,360)(239,359)(240,358)(241,357)
(242,356)(243,355)(244,354)(245,353)(246,352)(247,351)(248,350)(249,349)
(250,348)(251,347)(252,346)(253,345)(254,344)(255,343)(256,342)(257,341)
(258,340)(259,339)(260,338)(261,337)(262,410)(263,446)(264,445)(265,444)
(266,443)(267,442)(268,441)(269,440)(270,439)(271,438)(272,437)(273,436)
(274,435)(275,434)(276,433)(277,432)(278,431)(279,430)(280,429)(281,428)
(282,427)(283,426)(284,425)(285,424)(286,423)(287,422)(288,421)(289,420)
(290,419)(291,418)(292,417)(293,416)(294,415)(295,414)(296,413)(297,412)
(298,411)(299,373)(300,409)(301,408)(302,407)(303,406)(304,405)(305,404)
(306,403)(307,402)(308,401)(309,400)(310,399)(311,398)(312,397)(313,396)
(314,395)(315,394)(316,393)(317,392)(318,391)(319,390)(320,389)(321,388)
(322,387)(323,386)(324,385)(325,384)(326,383)(327,382)(328,381)(329,380)
(330,379)(331,378)(332,377)(333,376)(334,375)(335,374);
s2 := Sym(446)!(  3,263)(  4,262)(  5,298)(  6,297)(  7,296)(  8,295)(  9,294)
( 10,293)( 11,292)( 12,291)( 13,290)( 14,289)( 15,288)( 16,287)( 17,286)
( 18,285)( 19,284)( 20,283)( 21,282)( 22,281)( 23,280)( 24,279)( 25,278)
( 26,277)( 27,276)( 28,275)( 29,274)( 30,273)( 31,272)( 32,271)( 33,270)
( 34,269)( 35,268)( 36,267)( 37,266)( 38,265)( 39,264)( 40,226)( 41,225)
( 42,261)( 43,260)( 44,259)( 45,258)( 46,257)( 47,256)( 48,255)( 49,254)
( 50,253)( 51,252)( 52,251)( 53,250)( 54,249)( 55,248)( 56,247)( 57,246)
( 58,245)( 59,244)( 60,243)( 61,242)( 62,241)( 63,240)( 64,239)( 65,238)
( 66,237)( 67,236)( 68,235)( 69,234)( 70,233)( 71,232)( 72,231)( 73,230)
( 74,229)( 75,228)( 76,227)( 77,300)( 78,299)( 79,335)( 80,334)( 81,333)
( 82,332)( 83,331)( 84,330)( 85,329)( 86,328)( 87,327)( 88,326)( 89,325)
( 90,324)( 91,323)( 92,322)( 93,321)( 94,320)( 95,319)( 96,318)( 97,317)
( 98,316)( 99,315)(100,314)(101,313)(102,312)(103,311)(104,310)(105,309)
(106,308)(107,307)(108,306)(109,305)(110,304)(111,303)(112,302)(113,301)
(114,374)(115,373)(116,409)(117,408)(118,407)(119,406)(120,405)(121,404)
(122,403)(123,402)(124,401)(125,400)(126,399)(127,398)(128,397)(129,396)
(130,395)(131,394)(132,393)(133,392)(134,391)(135,390)(136,389)(137,388)
(138,387)(139,386)(140,385)(141,384)(142,383)(143,382)(144,381)(145,380)
(146,379)(147,378)(148,377)(149,376)(150,375)(151,337)(152,336)(153,372)
(154,371)(155,370)(156,369)(157,368)(158,367)(159,366)(160,365)(161,364)
(162,363)(163,362)(164,361)(165,360)(166,359)(167,358)(168,357)(169,356)
(170,355)(171,354)(172,353)(173,352)(174,351)(175,350)(176,349)(177,348)
(178,347)(179,346)(180,345)(181,344)(182,343)(183,342)(184,341)(185,340)
(186,339)(187,338)(188,411)(189,410)(190,446)(191,445)(192,444)(193,443)
(194,442)(195,441)(196,440)(197,439)(198,438)(199,437)(200,436)(201,435)
(202,434)(203,433)(204,432)(205,431)(206,430)(207,429)(208,428)(209,427)
(210,426)(211,425)(212,424)(213,423)(214,422)(215,421)(216,420)(217,419)
(218,418)(219,417)(220,416)(221,415)(222,414)(223,413)(224,412);
poly := sub<Sym(446)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope