include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {444}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {444}*888
Also Known As : 444-gon, {444}. if this polytope has another name.
Group : SmallGroup(888,39)
Rank : 2
Schlafli Type : {444}
Number of vertices, edges, etc : 444, 444
Order of s0s1 : 444
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{444,2} of size 1776
Vertex Figure Of :
{2,444} of size 1776
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {222}*444
3-fold quotients : {148}*296
4-fold quotients : {111}*222
6-fold quotients : {74}*148
12-fold quotients : {37}*74
37-fold quotients : {12}*24
74-fold quotients : {6}*12
111-fold quotients : {4}*8
148-fold quotients : {3}*6
222-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
2-fold covers : {888}*1776
Permutation Representation (GAP) :
s0 := ( 2, 37)( 3, 36)( 4, 35)( 5, 34)( 6, 33)( 7, 32)( 8, 31)( 9, 30)
( 10, 29)( 11, 28)( 12, 27)( 13, 26)( 14, 25)( 15, 24)( 16, 23)( 17, 22)
( 18, 21)( 19, 20)( 38, 75)( 39,111)( 40,110)( 41,109)( 42,108)( 43,107)
( 44,106)( 45,105)( 46,104)( 47,103)( 48,102)( 49,101)( 50,100)( 51, 99)
( 52, 98)( 53, 97)( 54, 96)( 55, 95)( 56, 94)( 57, 93)( 58, 92)( 59, 91)
( 60, 90)( 61, 89)( 62, 88)( 63, 87)( 64, 86)( 65, 85)( 66, 84)( 67, 83)
( 68, 82)( 69, 81)( 70, 80)( 71, 79)( 72, 78)( 73, 77)( 74, 76)(113,148)
(114,147)(115,146)(116,145)(117,144)(118,143)(119,142)(120,141)(121,140)
(122,139)(123,138)(124,137)(125,136)(126,135)(127,134)(128,133)(129,132)
(130,131)(149,186)(150,222)(151,221)(152,220)(153,219)(154,218)(155,217)
(156,216)(157,215)(158,214)(159,213)(160,212)(161,211)(162,210)(163,209)
(164,208)(165,207)(166,206)(167,205)(168,204)(169,203)(170,202)(171,201)
(172,200)(173,199)(174,198)(175,197)(176,196)(177,195)(178,194)(179,193)
(180,192)(181,191)(182,190)(183,189)(184,188)(185,187)(223,334)(224,370)
(225,369)(226,368)(227,367)(228,366)(229,365)(230,364)(231,363)(232,362)
(233,361)(234,360)(235,359)(236,358)(237,357)(238,356)(239,355)(240,354)
(241,353)(242,352)(243,351)(244,350)(245,349)(246,348)(247,347)(248,346)
(249,345)(250,344)(251,343)(252,342)(253,341)(254,340)(255,339)(256,338)
(257,337)(258,336)(259,335)(260,408)(261,444)(262,443)(263,442)(264,441)
(265,440)(266,439)(267,438)(268,437)(269,436)(270,435)(271,434)(272,433)
(273,432)(274,431)(275,430)(276,429)(277,428)(278,427)(279,426)(280,425)
(281,424)(282,423)(283,422)(284,421)(285,420)(286,419)(287,418)(288,417)
(289,416)(290,415)(291,414)(292,413)(293,412)(294,411)(295,410)(296,409)
(297,371)(298,407)(299,406)(300,405)(301,404)(302,403)(303,402)(304,401)
(305,400)(306,399)(307,398)(308,397)(309,396)(310,395)(311,394)(312,393)
(313,392)(314,391)(315,390)(316,389)(317,388)(318,387)(319,386)(320,385)
(321,384)(322,383)(323,382)(324,381)(325,380)(326,379)(327,378)(328,377)
(329,376)(330,375)(331,374)(332,373)(333,372);;
s1 := ( 1,261)( 2,260)( 3,296)( 4,295)( 5,294)( 6,293)( 7,292)( 8,291)
( 9,290)( 10,289)( 11,288)( 12,287)( 13,286)( 14,285)( 15,284)( 16,283)
( 17,282)( 18,281)( 19,280)( 20,279)( 21,278)( 22,277)( 23,276)( 24,275)
( 25,274)( 26,273)( 27,272)( 28,271)( 29,270)( 30,269)( 31,268)( 32,267)
( 33,266)( 34,265)( 35,264)( 36,263)( 37,262)( 38,224)( 39,223)( 40,259)
( 41,258)( 42,257)( 43,256)( 44,255)( 45,254)( 46,253)( 47,252)( 48,251)
( 49,250)( 50,249)( 51,248)( 52,247)( 53,246)( 54,245)( 55,244)( 56,243)
( 57,242)( 58,241)( 59,240)( 60,239)( 61,238)( 62,237)( 63,236)( 64,235)
( 65,234)( 66,233)( 67,232)( 68,231)( 69,230)( 70,229)( 71,228)( 72,227)
( 73,226)( 74,225)( 75,298)( 76,297)( 77,333)( 78,332)( 79,331)( 80,330)
( 81,329)( 82,328)( 83,327)( 84,326)( 85,325)( 86,324)( 87,323)( 88,322)
( 89,321)( 90,320)( 91,319)( 92,318)( 93,317)( 94,316)( 95,315)( 96,314)
( 97,313)( 98,312)( 99,311)(100,310)(101,309)(102,308)(103,307)(104,306)
(105,305)(106,304)(107,303)(108,302)(109,301)(110,300)(111,299)(112,372)
(113,371)(114,407)(115,406)(116,405)(117,404)(118,403)(119,402)(120,401)
(121,400)(122,399)(123,398)(124,397)(125,396)(126,395)(127,394)(128,393)
(129,392)(130,391)(131,390)(132,389)(133,388)(134,387)(135,386)(136,385)
(137,384)(138,383)(139,382)(140,381)(141,380)(142,379)(143,378)(144,377)
(145,376)(146,375)(147,374)(148,373)(149,335)(150,334)(151,370)(152,369)
(153,368)(154,367)(155,366)(156,365)(157,364)(158,363)(159,362)(160,361)
(161,360)(162,359)(163,358)(164,357)(165,356)(166,355)(167,354)(168,353)
(169,352)(170,351)(171,350)(172,349)(173,348)(174,347)(175,346)(176,345)
(177,344)(178,343)(179,342)(180,341)(181,340)(182,339)(183,338)(184,337)
(185,336)(186,409)(187,408)(188,444)(189,443)(190,442)(191,441)(192,440)
(193,439)(194,438)(195,437)(196,436)(197,435)(198,434)(199,433)(200,432)
(201,431)(202,430)(203,429)(204,428)(205,427)(206,426)(207,425)(208,424)
(209,423)(210,422)(211,421)(212,420)(213,419)(214,418)(215,417)(216,416)
(217,415)(218,414)(219,413)(220,412)(221,411)(222,410);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(444)!( 2, 37)( 3, 36)( 4, 35)( 5, 34)( 6, 33)( 7, 32)( 8, 31)
( 9, 30)( 10, 29)( 11, 28)( 12, 27)( 13, 26)( 14, 25)( 15, 24)( 16, 23)
( 17, 22)( 18, 21)( 19, 20)( 38, 75)( 39,111)( 40,110)( 41,109)( 42,108)
( 43,107)( 44,106)( 45,105)( 46,104)( 47,103)( 48,102)( 49,101)( 50,100)
( 51, 99)( 52, 98)( 53, 97)( 54, 96)( 55, 95)( 56, 94)( 57, 93)( 58, 92)
( 59, 91)( 60, 90)( 61, 89)( 62, 88)( 63, 87)( 64, 86)( 65, 85)( 66, 84)
( 67, 83)( 68, 82)( 69, 81)( 70, 80)( 71, 79)( 72, 78)( 73, 77)( 74, 76)
(113,148)(114,147)(115,146)(116,145)(117,144)(118,143)(119,142)(120,141)
(121,140)(122,139)(123,138)(124,137)(125,136)(126,135)(127,134)(128,133)
(129,132)(130,131)(149,186)(150,222)(151,221)(152,220)(153,219)(154,218)
(155,217)(156,216)(157,215)(158,214)(159,213)(160,212)(161,211)(162,210)
(163,209)(164,208)(165,207)(166,206)(167,205)(168,204)(169,203)(170,202)
(171,201)(172,200)(173,199)(174,198)(175,197)(176,196)(177,195)(178,194)
(179,193)(180,192)(181,191)(182,190)(183,189)(184,188)(185,187)(223,334)
(224,370)(225,369)(226,368)(227,367)(228,366)(229,365)(230,364)(231,363)
(232,362)(233,361)(234,360)(235,359)(236,358)(237,357)(238,356)(239,355)
(240,354)(241,353)(242,352)(243,351)(244,350)(245,349)(246,348)(247,347)
(248,346)(249,345)(250,344)(251,343)(252,342)(253,341)(254,340)(255,339)
(256,338)(257,337)(258,336)(259,335)(260,408)(261,444)(262,443)(263,442)
(264,441)(265,440)(266,439)(267,438)(268,437)(269,436)(270,435)(271,434)
(272,433)(273,432)(274,431)(275,430)(276,429)(277,428)(278,427)(279,426)
(280,425)(281,424)(282,423)(283,422)(284,421)(285,420)(286,419)(287,418)
(288,417)(289,416)(290,415)(291,414)(292,413)(293,412)(294,411)(295,410)
(296,409)(297,371)(298,407)(299,406)(300,405)(301,404)(302,403)(303,402)
(304,401)(305,400)(306,399)(307,398)(308,397)(309,396)(310,395)(311,394)
(312,393)(313,392)(314,391)(315,390)(316,389)(317,388)(318,387)(319,386)
(320,385)(321,384)(322,383)(323,382)(324,381)(325,380)(326,379)(327,378)
(328,377)(329,376)(330,375)(331,374)(332,373)(333,372);
s1 := Sym(444)!( 1,261)( 2,260)( 3,296)( 4,295)( 5,294)( 6,293)( 7,292)
( 8,291)( 9,290)( 10,289)( 11,288)( 12,287)( 13,286)( 14,285)( 15,284)
( 16,283)( 17,282)( 18,281)( 19,280)( 20,279)( 21,278)( 22,277)( 23,276)
( 24,275)( 25,274)( 26,273)( 27,272)( 28,271)( 29,270)( 30,269)( 31,268)
( 32,267)( 33,266)( 34,265)( 35,264)( 36,263)( 37,262)( 38,224)( 39,223)
( 40,259)( 41,258)( 42,257)( 43,256)( 44,255)( 45,254)( 46,253)( 47,252)
( 48,251)( 49,250)( 50,249)( 51,248)( 52,247)( 53,246)( 54,245)( 55,244)
( 56,243)( 57,242)( 58,241)( 59,240)( 60,239)( 61,238)( 62,237)( 63,236)
( 64,235)( 65,234)( 66,233)( 67,232)( 68,231)( 69,230)( 70,229)( 71,228)
( 72,227)( 73,226)( 74,225)( 75,298)( 76,297)( 77,333)( 78,332)( 79,331)
( 80,330)( 81,329)( 82,328)( 83,327)( 84,326)( 85,325)( 86,324)( 87,323)
( 88,322)( 89,321)( 90,320)( 91,319)( 92,318)( 93,317)( 94,316)( 95,315)
( 96,314)( 97,313)( 98,312)( 99,311)(100,310)(101,309)(102,308)(103,307)
(104,306)(105,305)(106,304)(107,303)(108,302)(109,301)(110,300)(111,299)
(112,372)(113,371)(114,407)(115,406)(116,405)(117,404)(118,403)(119,402)
(120,401)(121,400)(122,399)(123,398)(124,397)(125,396)(126,395)(127,394)
(128,393)(129,392)(130,391)(131,390)(132,389)(133,388)(134,387)(135,386)
(136,385)(137,384)(138,383)(139,382)(140,381)(141,380)(142,379)(143,378)
(144,377)(145,376)(146,375)(147,374)(148,373)(149,335)(150,334)(151,370)
(152,369)(153,368)(154,367)(155,366)(156,365)(157,364)(158,363)(159,362)
(160,361)(161,360)(162,359)(163,358)(164,357)(165,356)(166,355)(167,354)
(168,353)(169,352)(170,351)(171,350)(172,349)(173,348)(174,347)(175,346)
(176,345)(177,344)(178,343)(179,342)(180,341)(181,340)(182,339)(183,338)
(184,337)(185,336)(186,409)(187,408)(188,444)(189,443)(190,442)(191,441)
(192,440)(193,439)(194,438)(195,437)(196,436)(197,435)(198,434)(199,433)
(200,432)(201,431)(202,430)(203,429)(204,428)(205,427)(206,426)(207,425)
(208,424)(209,423)(210,422)(211,421)(212,420)(213,419)(214,418)(215,417)
(216,416)(217,415)(218,414)(219,413)(220,412)(221,411)(222,410);
poly := sub<Sym(444)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope