include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {16,2,30}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {16,2,30}*1920
if this polytope has a name.
Group : SmallGroup(1920,203894)
Rank : 4
Schlafli Type : {16,2,30}
Number of vertices, edges, etc : 16, 16, 30, 30
Order of s0s1s2s3 : 240
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {16,2,15}*960, {8,2,30}*960
3-fold quotients : {16,2,10}*640
4-fold quotients : {8,2,15}*480, {4,2,30}*480
5-fold quotients : {16,2,6}*384
6-fold quotients : {16,2,5}*320, {8,2,10}*320
8-fold quotients : {4,2,15}*240, {2,2,30}*240
10-fold quotients : {16,2,3}*192, {8,2,6}*192
12-fold quotients : {8,2,5}*160, {4,2,10}*160
15-fold quotients : {16,2,2}*128
16-fold quotients : {2,2,15}*120
20-fold quotients : {8,2,3}*96, {4,2,6}*96
24-fold quotients : {4,2,5}*80, {2,2,10}*80
30-fold quotients : {8,2,2}*64
40-fold quotients : {4,2,3}*48, {2,2,6}*48
48-fold quotients : {2,2,5}*40
60-fold quotients : {4,2,2}*32
80-fold quotients : {2,2,3}*24
120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16);;
s2 := (19,20)(21,22)(23,24)(25,26)(27,30)(28,29)(31,32)(33,36)(34,35)(37,38)
(39,42)(40,41)(43,46)(44,45);;
s3 := (17,33)(18,27)(19,25)(20,35)(21,23)(22,43)(24,29)(26,39)(28,37)(30,45)
(31,34)(32,44)(36,41)(38,40)(42,46);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(46)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);
s1 := Sym(46)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16);
s2 := Sym(46)!(19,20)(21,22)(23,24)(25,26)(27,30)(28,29)(31,32)(33,36)(34,35)
(37,38)(39,42)(40,41)(43,46)(44,45);
s3 := Sym(46)!(17,33)(18,27)(19,25)(20,35)(21,23)(22,43)(24,29)(26,39)(28,37)
(30,45)(31,34)(32,44)(36,41)(38,40)(42,46);
poly := sub<Sym(46)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope