Polytope of Type {4,4,30,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4,30,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,205018)
Rank : 5
Schlafli Type : {4,4,30,2}
Number of vertices, edges, etc : 4, 8, 60, 30, 2
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,30,2}*960a, {4,2,30,2}*960
   3-fold quotients : {4,4,10,2}*640
   4-fold quotients : {4,2,15,2}*480, {2,2,30,2}*480
   5-fold quotients : {4,4,6,2}*384
   6-fold quotients : {2,4,10,2}*320, {4,2,10,2}*320
   8-fold quotients : {2,2,15,2}*240
   10-fold quotients : {2,4,6,2}*192a, {4,2,6,2}*192
   12-fold quotients : {4,2,5,2}*160, {2,2,10,2}*160
   15-fold quotients : {4,4,2,2}*128
   20-fold quotients : {4,2,3,2}*96, {2,2,6,2}*96
   24-fold quotients : {2,2,5,2}*80
   30-fold quotients : {2,4,2,2}*64, {4,2,2,2}*64
   40-fold quotients : {2,2,3,2}*48
   60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 61, 76)( 62, 77)( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)( 68, 83)
( 69, 84)( 70, 85)( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)( 91,106)
( 92,107)( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)( 99,114)
(100,115)(101,116)(102,117)(103,118)(104,119)(105,120);;
s1 := (  1, 61)(  2, 62)(  3, 63)(  4, 64)(  5, 65)(  6, 66)(  7, 67)(  8, 68)
(  9, 69)( 10, 70)( 11, 71)( 12, 72)( 13, 73)( 14, 74)( 15, 75)( 16, 76)
( 17, 77)( 18, 78)( 19, 79)( 20, 80)( 21, 81)( 22, 82)( 23, 83)( 24, 84)
( 25, 85)( 26, 86)( 27, 87)( 28, 88)( 29, 89)( 30, 90)( 31, 91)( 32, 92)
( 33, 93)( 34, 94)( 35, 95)( 36, 96)( 37, 97)( 38, 98)( 39, 99)( 40,100)
( 41,101)( 42,102)( 43,103)( 44,104)( 45,105)( 46,106)( 47,107)( 48,108)
( 49,109)( 50,110)( 51,111)( 52,112)( 53,113)( 54,114)( 55,115)( 56,116)
( 57,117)( 58,118)( 59,119)( 60,120);;
s2 := (  2,  5)(  3,  4)(  6, 11)(  7, 15)(  8, 14)(  9, 13)( 10, 12)( 17, 20)
( 18, 19)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 32, 35)( 33, 34)
( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)( 47, 50)( 48, 49)( 51, 56)
( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 91)( 62, 95)( 63, 94)( 64, 93)
( 65, 92)( 66,101)( 67,105)( 68,104)( 69,103)( 70,102)( 71, 96)( 72,100)
( 73, 99)( 74, 98)( 75, 97)( 76,106)( 77,110)( 78,109)( 79,108)( 80,107)
( 81,116)( 82,120)( 83,119)( 84,118)( 85,117)( 86,111)( 87,115)( 88,114)
( 89,113)( 90,112);;
s3 := (  1,  7)(  2,  6)(  3, 10)(  4,  9)(  5,  8)( 11, 12)( 13, 15)( 16, 22)
( 17, 21)( 18, 25)( 19, 24)( 20, 23)( 26, 27)( 28, 30)( 31, 37)( 32, 36)
( 33, 40)( 34, 39)( 35, 38)( 41, 42)( 43, 45)( 46, 52)( 47, 51)( 48, 55)
( 49, 54)( 50, 53)( 56, 57)( 58, 60)( 61, 67)( 62, 66)( 63, 70)( 64, 69)
( 65, 68)( 71, 72)( 73, 75)( 76, 82)( 77, 81)( 78, 85)( 79, 84)( 80, 83)
( 86, 87)( 88, 90)( 91, 97)( 92, 96)( 93,100)( 94, 99)( 95, 98)(101,102)
(103,105)(106,112)(107,111)(108,115)(109,114)(110,113)(116,117)(118,120);;
s4 := (121,122);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(122)!( 61, 76)( 62, 77)( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)
( 68, 83)( 69, 84)( 70, 85)( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)
( 91,106)( 92,107)( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)
( 99,114)(100,115)(101,116)(102,117)(103,118)(104,119)(105,120);
s1 := Sym(122)!(  1, 61)(  2, 62)(  3, 63)(  4, 64)(  5, 65)(  6, 66)(  7, 67)
(  8, 68)(  9, 69)( 10, 70)( 11, 71)( 12, 72)( 13, 73)( 14, 74)( 15, 75)
( 16, 76)( 17, 77)( 18, 78)( 19, 79)( 20, 80)( 21, 81)( 22, 82)( 23, 83)
( 24, 84)( 25, 85)( 26, 86)( 27, 87)( 28, 88)( 29, 89)( 30, 90)( 31, 91)
( 32, 92)( 33, 93)( 34, 94)( 35, 95)( 36, 96)( 37, 97)( 38, 98)( 39, 99)
( 40,100)( 41,101)( 42,102)( 43,103)( 44,104)( 45,105)( 46,106)( 47,107)
( 48,108)( 49,109)( 50,110)( 51,111)( 52,112)( 53,113)( 54,114)( 55,115)
( 56,116)( 57,117)( 58,118)( 59,119)( 60,120);
s2 := Sym(122)!(  2,  5)(  3,  4)(  6, 11)(  7, 15)(  8, 14)(  9, 13)( 10, 12)
( 17, 20)( 18, 19)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 32, 35)
( 33, 34)( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)( 47, 50)( 48, 49)
( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 91)( 62, 95)( 63, 94)
( 64, 93)( 65, 92)( 66,101)( 67,105)( 68,104)( 69,103)( 70,102)( 71, 96)
( 72,100)( 73, 99)( 74, 98)( 75, 97)( 76,106)( 77,110)( 78,109)( 79,108)
( 80,107)( 81,116)( 82,120)( 83,119)( 84,118)( 85,117)( 86,111)( 87,115)
( 88,114)( 89,113)( 90,112);
s3 := Sym(122)!(  1,  7)(  2,  6)(  3, 10)(  4,  9)(  5,  8)( 11, 12)( 13, 15)
( 16, 22)( 17, 21)( 18, 25)( 19, 24)( 20, 23)( 26, 27)( 28, 30)( 31, 37)
( 32, 36)( 33, 40)( 34, 39)( 35, 38)( 41, 42)( 43, 45)( 46, 52)( 47, 51)
( 48, 55)( 49, 54)( 50, 53)( 56, 57)( 58, 60)( 61, 67)( 62, 66)( 63, 70)
( 64, 69)( 65, 68)( 71, 72)( 73, 75)( 76, 82)( 77, 81)( 78, 85)( 79, 84)
( 80, 83)( 86, 87)( 88, 90)( 91, 97)( 92, 96)( 93,100)( 94, 99)( 95, 98)
(101,102)(103,105)(106,112)(107,111)(108,115)(109,114)(110,113)(116,117)
(118,120);
s4 := Sym(122)!(121,122);
poly := sub<Sym(122)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope