include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,4,30}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4,30}*960
Also Known As : {{4,4|2},{4,30|2}}. if this polytope has another name.
Group : SmallGroup(960,10542)
Rank : 4
Schlafli Type : {4,4,30}
Number of vertices, edges, etc : 4, 8, 60, 30
Order of s0s1s2s3 : 60
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,4,30,2} of size 1920
Vertex Figure Of :
{2,4,4,30} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,30}*480a, {4,2,30}*480
3-fold quotients : {4,4,10}*320
4-fold quotients : {4,2,15}*240, {2,2,30}*240
5-fold quotients : {4,4,6}*192
6-fold quotients : {2,4,10}*160, {4,2,10}*160
8-fold quotients : {2,2,15}*120
10-fold quotients : {2,4,6}*96a, {4,2,6}*96
12-fold quotients : {4,2,5}*80, {2,2,10}*80
15-fold quotients : {4,4,2}*64
20-fold quotients : {4,2,3}*48, {2,2,6}*48
24-fold quotients : {2,2,5}*40
30-fold quotients : {2,4,2}*32, {4,2,2}*32
40-fold quotients : {2,2,3}*24
60-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,4,60}*1920, {4,8,30}*1920a, {8,4,30}*1920a, {4,8,30}*1920b, {8,4,30}*1920b, {4,4,30}*1920a
Permutation Representation (GAP) :
s0 := ( 61, 76)( 62, 77)( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)( 68, 83)
( 69, 84)( 70, 85)( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)( 91,106)
( 92,107)( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)( 99,114)
(100,115)(101,116)(102,117)(103,118)(104,119)(105,120);;
s1 := ( 1, 61)( 2, 62)( 3, 63)( 4, 64)( 5, 65)( 6, 66)( 7, 67)( 8, 68)
( 9, 69)( 10, 70)( 11, 71)( 12, 72)( 13, 73)( 14, 74)( 15, 75)( 16, 76)
( 17, 77)( 18, 78)( 19, 79)( 20, 80)( 21, 81)( 22, 82)( 23, 83)( 24, 84)
( 25, 85)( 26, 86)( 27, 87)( 28, 88)( 29, 89)( 30, 90)( 31, 91)( 32, 92)
( 33, 93)( 34, 94)( 35, 95)( 36, 96)( 37, 97)( 38, 98)( 39, 99)( 40,100)
( 41,101)( 42,102)( 43,103)( 44,104)( 45,105)( 46,106)( 47,107)( 48,108)
( 49,109)( 50,110)( 51,111)( 52,112)( 53,113)( 54,114)( 55,115)( 56,116)
( 57,117)( 58,118)( 59,119)( 60,120);;
s2 := ( 2, 5)( 3, 4)( 6, 11)( 7, 15)( 8, 14)( 9, 13)( 10, 12)( 17, 20)
( 18, 19)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 32, 35)( 33, 34)
( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)( 47, 50)( 48, 49)( 51, 56)
( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 91)( 62, 95)( 63, 94)( 64, 93)
( 65, 92)( 66,101)( 67,105)( 68,104)( 69,103)( 70,102)( 71, 96)( 72,100)
( 73, 99)( 74, 98)( 75, 97)( 76,106)( 77,110)( 78,109)( 79,108)( 80,107)
( 81,116)( 82,120)( 83,119)( 84,118)( 85,117)( 86,111)( 87,115)( 88,114)
( 89,113)( 90,112);;
s3 := ( 1, 7)( 2, 6)( 3, 10)( 4, 9)( 5, 8)( 11, 12)( 13, 15)( 16, 22)
( 17, 21)( 18, 25)( 19, 24)( 20, 23)( 26, 27)( 28, 30)( 31, 37)( 32, 36)
( 33, 40)( 34, 39)( 35, 38)( 41, 42)( 43, 45)( 46, 52)( 47, 51)( 48, 55)
( 49, 54)( 50, 53)( 56, 57)( 58, 60)( 61, 67)( 62, 66)( 63, 70)( 64, 69)
( 65, 68)( 71, 72)( 73, 75)( 76, 82)( 77, 81)( 78, 85)( 79, 84)( 80, 83)
( 86, 87)( 88, 90)( 91, 97)( 92, 96)( 93,100)( 94, 99)( 95, 98)(101,102)
(103,105)(106,112)(107,111)(108,115)(109,114)(110,113)(116,117)(118,120);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(120)!( 61, 76)( 62, 77)( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)
( 68, 83)( 69, 84)( 70, 85)( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)
( 91,106)( 92,107)( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)
( 99,114)(100,115)(101,116)(102,117)(103,118)(104,119)(105,120);
s1 := Sym(120)!( 1, 61)( 2, 62)( 3, 63)( 4, 64)( 5, 65)( 6, 66)( 7, 67)
( 8, 68)( 9, 69)( 10, 70)( 11, 71)( 12, 72)( 13, 73)( 14, 74)( 15, 75)
( 16, 76)( 17, 77)( 18, 78)( 19, 79)( 20, 80)( 21, 81)( 22, 82)( 23, 83)
( 24, 84)( 25, 85)( 26, 86)( 27, 87)( 28, 88)( 29, 89)( 30, 90)( 31, 91)
( 32, 92)( 33, 93)( 34, 94)( 35, 95)( 36, 96)( 37, 97)( 38, 98)( 39, 99)
( 40,100)( 41,101)( 42,102)( 43,103)( 44,104)( 45,105)( 46,106)( 47,107)
( 48,108)( 49,109)( 50,110)( 51,111)( 52,112)( 53,113)( 54,114)( 55,115)
( 56,116)( 57,117)( 58,118)( 59,119)( 60,120);
s2 := Sym(120)!( 2, 5)( 3, 4)( 6, 11)( 7, 15)( 8, 14)( 9, 13)( 10, 12)
( 17, 20)( 18, 19)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 32, 35)
( 33, 34)( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)( 47, 50)( 48, 49)
( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 91)( 62, 95)( 63, 94)
( 64, 93)( 65, 92)( 66,101)( 67,105)( 68,104)( 69,103)( 70,102)( 71, 96)
( 72,100)( 73, 99)( 74, 98)( 75, 97)( 76,106)( 77,110)( 78,109)( 79,108)
( 80,107)( 81,116)( 82,120)( 83,119)( 84,118)( 85,117)( 86,111)( 87,115)
( 88,114)( 89,113)( 90,112);
s3 := Sym(120)!( 1, 7)( 2, 6)( 3, 10)( 4, 9)( 5, 8)( 11, 12)( 13, 15)
( 16, 22)( 17, 21)( 18, 25)( 19, 24)( 20, 23)( 26, 27)( 28, 30)( 31, 37)
( 32, 36)( 33, 40)( 34, 39)( 35, 38)( 41, 42)( 43, 45)( 46, 52)( 47, 51)
( 48, 55)( 49, 54)( 50, 53)( 56, 57)( 58, 60)( 61, 67)( 62, 66)( 63, 70)
( 64, 69)( 65, 68)( 71, 72)( 73, 75)( 76, 82)( 77, 81)( 78, 85)( 79, 84)
( 80, 83)( 86, 87)( 88, 90)( 91, 97)( 92, 96)( 93,100)( 94, 99)( 95, 98)
(101,102)(103,105)(106,112)(107,111)(108,115)(109,114)(110,113)(116,117)
(118,120);
poly := sub<Sym(120)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
References : None.
to this polytope